Cultural Resources Evaluations
Augusta Corporate Park
Richmond County, Georgia

Prepared for:
Cranston Engineering Group, P.C.
452 Ellis Street
Augusta, Georgia 30901

Prepared by:
S&ME, Inc.
134 Suber Road
Columbia, South Carolina 29210

S&ME Project No. 213570
HPD Project No. HP-141006-003

Kimberly Nagle, M.S., RPA
Principal Investigator

Authors: Kimberly Nagle and Heather Carpini, M.A.

September 2021
Management Summary

On behalf of Cranston Engineering Group, P.C., S&ME, Inc. (S&ME) has completed Phase II testing at archaeological sites 9RI192, 9RI1137/1139, 9RI1138, and 9RI1154; additional research on historic resource ACP-1; and ground penetrating radar (GPR) at the Johnson Cemetery (9RI1165) at the Augusta Corporate Park, Richmond County, Georgia (Figures 1.1 through 1.5). The project area is located east of Mike Padgett Highway (SR 56) and south of Horseshoe Road, near the small community of Mechanic Hill. Work for this project was carried out in general accordance with S&ME Proposal No. 213570, dated April 8, 2021.

In October 2014, S&ME submitted a cultural resources literature review and reconnaissance survey report of the proposed approximately 1,612-acre Augusta Corporate Park to the Georgia Historic Preservation Division (HPD) (Nagle and Carpini 2014). In a letter dated November 3, 2014, the HPD agreed with the recommendation that 993 of the 1,612 acres had the potential to contain significant archaeological sites and that a Phase I survey should be conducted (Appendix A). In addition to the Phase I survey, HPD requested that a site form be completed for the Johnson Cemetery, additional testing at the cemetery be conducted to determine if there are graves located outside the current fenced boundary of the cemetery, an appropriate buffer be established around the cemetery and marked by orange construction fencing during construction, and that an architectural survey be conducted around the project area to identify buildings 50 years old or older and evaluate the impact (if any) the construction will have on them.

From February through April 2015, S&ME completed a Phase I archaeological survey of the 993 acres identified as high probability in the 2014 report and conducted an architectural survey (Nagle and Carpini 2016). During the survey, 20 archaeological sites, 27 isolated finds, and 12 aboveground historic resources were identified or revisited, recorded, and evaluated for inclusion in the National Register of Historic Places (NRHP). Four archaeological sites (9RI1137/1139, 9RI1138, 9RI1140, and 9RI1154) and one historic structure (ACP-1) were recommended as needing additional work to determine their final NRHP eligibility. Additional testing, in the form of GPR, was recommended for the Johnson Cemetery (9RI1165), to determine if there are graves outside the currently fenced boundary of the cemetery. Once the extent of the burials has been determined, an appropriate buffer will be established around the cemetery, orange fencing will be placed around the established buffer prior to construction, and site 9RI1165 will be treated as an Environmentally Sensitive Area (ESA) during construction. Cemetery 1 (9RI1166) was not assessed for National Register eligibility, but systematic probing was conducted during the survey to determine the unmarked cemetery’s boundaries. A buffer of 30-m was established surrounding the cemetery and, prior to construction, it was recommended that orange construction fencing be placed around the established buffer and site 9RI1166 was to be treated as an ESA during construction. In a letter dated September 26, 2016, HPD agreed that 14 archaeological sites, the isolated finds, and 11 of the historic resources were not eligible for inclusion in the NRHP, with the recommendations of avoidance of site 9RI1166, Cemetery 1, and the proposed 30-ft buffer; the additional recommended for archaeological sites 9RI1137/1139, 9RI1138, 9RI1140, 9RI1154, and historic structure (ACP-1); and the GPR work and buffer at the Johnson Cemetery, 9RI1165 (Appendix A). S&ME recommended previously recorded archaeological site 9RI192 as not eligible for inclusion in the NRHP, but in the review letter HPD disagreed and recommended Phase II testing at the site.

In November 2016, a proposed utility corridor extension in the Augusta Corporate Park had the potential to effect sites 9RI1140 and 9RI1166 (Cemetery 1), which were recommended for Phase II testing and avoidance. At Cemetery 1 (9RI1166), a 30-ft grave free buffer was established, and the site would be labeled as an ESA on construction drawings; orange construction fencing was to be placed surrounding site 9RI1140, which would also
be labeled as an ESA on construction plans. In a letter dated November 28, 2016, the HPD agreed that, as proposed, the project would have no adverse effect on the two resources (Appendix A). The work recommended for the other archaeological sites and historic resource would still need to be completed if other development were to occur within the Augusta Corporate Park.

Fieldwork for the current project was completed intermittently from June through August 2021. A revisit to document current site conditions was completed for sites 9RI1140 and 9RI1166, Cemetery 1; a geophysical survey and ground truthing was completed at site 9RI1165, Johnson Cemetery; Phase II testing was completed at sites 9RI192, 9RI1137/1139, 9RI1138, and 9RI1154; and a revisit and NRHP evaluation was completed for ACP-1.

As a result of the cultural resources evaluations, site 9RI1140 and 9RI1166, Cemetery 1, have been avoided by previous work. Although tree clearing has occurred at site 9RI1140, ground disturbance appears minimal. Avoidance of these two areas and marking them as ESAs on construction plans should be completed prior to ground disturbance in the areas around the two sites. If avoidance is not possible, Phase II testing should be completed at site 9RI1140 and the state laws governing moving abandoned cemeteries should be followed.

Based on the additional research and NRHP evaluation completed for ACP-1, the resource is recommended not eligible for inclusion in the NRHP. Based on the Phase II testing at sites 9RI192, 9RI1137/1139, 9RI1138, and 9RI1154, S&ME recommends that sites 9RI192, 9RI1137/1139, and 9RI1154 are not eligible for inclusion in the NRHP. Site 9RI1138, based on the majority of the artifacts recovered (n=185; 63%) being from intact deposits, the presence of an Archaic feature and diagnostic chipped stone tools in intact deposits, and a relatively large amount and moderate diversity of artifacts, is recommended eligible for inclusion in the NRHP under Criterion D, for its potential to yield important information regarding the prehistory of the area. S&ME recommends that the site be avoided and marked as an ESA with orange construction fencing surrounding the site prior to construction activities commencing. If site 9RI1138 cannot be avoided, additional consultation with HPD regarding mitigation of the site will need to be conducted.

Geophysical investigations completed at site 9RI1165, Johnson Cemetery, revealed that there are no unmarked graves outside the current chain link fence boundary. There are at least three unmarked graves within the chain link fence boundary. It is recommended that the site be marked as an ESA on construction plans prior to construction commencing and the cemetery be avoided. If avoidance is not possible, the state laws governing moving abandoned cemeteries should be followed.

<table>
<thead>
<tr>
<th>Site Number</th>
<th>Description</th>
<th>NRHP Eligibility</th>
<th>Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>9RI192</td>
<td>Late Archaic/Early Woodland lithic scatter</td>
<td>Not Eligible</td>
<td>No Additional Work</td>
</tr>
<tr>
<td>9RI1137/1139</td>
<td>Prehistoric campsite; 19th/20th century artifact scatter</td>
<td>Not Eligible</td>
<td>No Additional Work</td>
</tr>
<tr>
<td>9RI1138</td>
<td>Early/Late Archaic and Middle/Late Woodland campsite</td>
<td>Eligible</td>
<td>Avoidance or Mitigation</td>
</tr>
<tr>
<td>9RI1140</td>
<td>Woodland lithic and ceramic scatter</td>
<td>Not Assessed</td>
<td>Avoidance or Phase II Testing</td>
</tr>
<tr>
<td>9RI1154</td>
<td>Middle/Late Woodland and Mississippian campsite; Historic artifact scatter</td>
<td>Not Eligible</td>
<td>No Additional Work</td>
</tr>
<tr>
<td>9RI1165</td>
<td>Johnson Cemetery, 19th/20th century</td>
<td>Not Assessed</td>
<td>Avoidance/Fencing</td>
</tr>
<tr>
<td>9RI1166</td>
<td>Cemetery 1, 20th century</td>
<td>Not Eligible</td>
<td>Avoidance/Fencing</td>
</tr>
<tr>
<td>ACP-1</td>
<td>20th century farm complex</td>
<td>Not Eligible</td>
<td>No Additional Work</td>
</tr>
</tbody>
</table>
Table of Contents

Management Summary

Table of Contents

1.0 Introduction

2.0 Environmental Setting

- 2.1 Location .. 7
- 2.2 Geology and Topography ... 7
- 2.3 Hydrology .. 7
- 2.4 Soils .. 7
- 2.5 Climate and Vegetation ... 7

3.0 Cultural Context

- 3.1 Prehistoric Context .. 12
 - 3.1.1 Paleoindian Period (ca. 13,500–10,000 B.P.) ... 12
 - 3.1.2 Archaic Period (ca. 10,000–3000 B.P.) ... 13
 - 3.1.3 Woodland Period (ca. 3000–1000 B.P.) ... 15
 - 3.1.4 Mississippian Period (ca. 1000–500 B.P.) ... 16
- 3.2 Historic Context .. 17
 - 3.2.1 Exploration and Early Settlement ... 17
 - 3.2.2 Antebellum Period ... 19
 - 3.2.3 Civil War and Reconstruction ... 22
 - 3.2.4 Twentieth Century ... 24
 - 3.2.5 McBean .. 25
- 3.3 Background Research ... 26

4.0 Methods

- 4.1 Research Method ... 38
- 4.2Archaeological Field Methods ... 38
- 4.3Laboratory Methods ... 38
- 4.4Geophysical Field Methods .. 39
- 4.5Architectural Field Methods .. 39
4.6 National Register Eligibility Assessment ... 39

5.0 Results ... 41

5.1 Site 9RI192 .. 41
 5.1.1 Phase II Testing ... 44
 5.1.2 Results of Analysis .. 47
 5.1.3 Summary ... 49

5.2 Site 9RI1137/1139 .. 50
 5.2.1 Phase II Testing ... 51
 5.2.2 Results of Analysis .. 55
 5.2.3 Summary ... 58

5.3 Site 9RI1138 .. 58
 5.3.1 Phase II Testing ... 58
 5.3.2 Results of Analysis .. 67
 5.3.3 Summary ... 71

5.4 Site 9RI1154 .. 72
 5.4.1 Phase II Testing ... 72
 5.4.2 Results of Analysis .. 78
 5.4.3 Summary ... 84

5.5 Johnson Cemetery (9RI1165) .. 85

5.6 ACP-1 - 1053 Horseshoe Road ... 89

6.0 Conclusions and Recommendations ... 98

7.0 References Cited .. 100

8.0 Appendix A – HPD Correspondence .. 110

9.0 Appendix B – Artifact Catalog .. 111

10.0 Appendix C – GPR Report .. 112

11.0 Appendix D - Resumes .. 113
List of Figures

Figure 1.1. Map showing project area within the region ... 2
Figure 1.2. Map showing project area within the state ... 3
Figure 1.3. Map showing project area within the county .. 4
Figure 1.4. Topographic map showing project area and cultural resources evaluated during the survey 5
Figure 1.5. Aerial map showing project area and cultural resources evaluated during the survey 6
Figure 2.1. Current vegetation at site 9RI192, facing east .. 8
Figure 2.2. Typical vegetation at sites 9RI1137/1139, 9RI1138, and 9RI1154, facing north 8
Figure 2.3. Aerial map showing soil type at site 9RI152 ... 9
Figure 2.4. Aerial map showing soil types at site 9RI1137/1139 and 9RI1138 10
Figure 2.5. Aerial map showing soil types at site 9RI1154 .. 11
Figure 3.1. Previously recorded archaeological sites within a one-mile radius of the project area, screen shot from GNAHRGIS ... 27
Figure 3.2. Previously completed cultural resource surveys within one-mile radius of the project area, screen shot from GNAHRGIS ... 28
Figure 3.3. Previously recorded aboveground resources within one-mile radius of the project area, screen shot from GNAHRGIS ... 29
Figure 3.4. Faden’s Map (1780) showing Augusta and vicinity ... 30
Figure 3.5. Lloyd map (1864), showing approximate project area ... 30
Figure 3.6 Railroad and county map of Georgia (1883), showing Augusta vicinity and project area 31
Figure 3.7. Railway map (1899), showing Augusta vicinity and approximate project area 31
Figure 3.8. Hudgins map (1915), showing Augusta vicinity and approximate project area 32
Figure 3.9. USDA soil survey map (1916), showing approximate project area 32
Figure 3.10. Georgia Department of Transportation map (1951), showing approximate project area 33
Figure 3.11. Georgia Department of Transportation map (1966), showing approximate project area 33
Figure 3.12. Georgia Department of Transportation map (1973), showing approximate project area 34
Figure 3.13. Georgia Department of Transportation map (1982), showing approximate project area 34
Figure 3.14. USGS topographic map (1965), showing approximate project area 35
Figure 3.15. USGS topographic map (1971), showing approximate project area 36
Figure 3.16. USGS topographic map (1981), showing approximate project area 37
Figure 5.1. Vegetation at site 9RI1166 (Cemetery 1), facing northwest ... 42
Figure 5.2. Vegetation at site 9RI1166 (Cemetery 1), facing northwest ... 42
Figure 5.3. Current vegetation at site 9RI1140, facing southeast ... 43
Figure 5.4. Current vegetation at site 9RI1140, facing west .. 43
Figure 5.5. Overview of site 9RI192, facing southeast ... 44
Figure 5.6. Site map of 9RI192 ... 45
Figure 5.7. Site 9RI192, Test Unit 1, east wall profile drawing .. 46
Figure 5.8. Site 9RI192, Test Unit 1, east wall profile ... 46
Figure 5.9. Site 9RI192 artifact types .. 47
Figure 5.10. Lithic raw materials at site 9RI192 ... 48
Figure 5.11. Lithic debitage size grades at site 9RI192 .. 49
Figure 5.12. Overview of site 9RI1137/1139, facing north .. 50
Figure 5.13. Site map of 9RI1137/1139 (test unit size not to scale) ... 52
Figure 5.14. Site 9RI1137/1139, Test Unit 1, east wall profile drawing 53
Figure 5.15. Site 9RI1137/1138, Test Unit 1, east wall profile .. 53
Figure 5.16. Site 9RI1137/1139, Test Unit 2, west wall profile drawing 54
Figure 5.17. Site 9RI1137/1139, Test Unit 2, north wall profile .. 54
Figure 5.18. Site 9RI1137/1139 artifact types ... 56
Figure 5.19. Coastal Plain chert core from site 9RI1137/1139 ... 56
Figure 5.20. Fine sand tempered cordmarker pottery and Coastal Plain chert utilized flake from site 9RI1137/1139 .. 57
Figure 5.21. Lithic debitage size grades at site 9RI1137/1139 ... 57
Figure 5.22. Site map of site 9RI1138 (test unit size not to scale) ... 59
Figure 5.23. Overview of site 9RI1138, facing west ... 60
Figure 5.24. Site 9RI1138, Test Unit 2, east wall profile drawing .. 61
Figure 5.25. Site 9RI1138, Test Unit 2, east wall profile ... 62
Figure 5.26. Site 9RI1138, Test Unit 4, Feature 1 plan view .. 65
Figure 5.27. Site 9RI1138, Test Unit 4, Feature 1, plan view .. 66
Figure 5.28. Site 9RI1138 artifact types .. 68
Figure 5.29. Projectile points from 9RI1138, from left to right, Kirk Corner Notched, Savannah River, and Small Savannah River, each manufactured from Coastal Plain chert .. 68
Figure 5.30. Lithic tools from 9RI1138, from left to right, scraper, retouched flake, and two utilized flakes .. 69
Figure 5.31. Lithic artifacts from Feature 1, 9RI1138, from left to right, retouched flake and utilized flake .. 69
Figure 5.32. Number of artifacts per level at site 9RI1138 .. 70
Figure 5.33. Lithic raw materials at site 9RI1138 ... 70
Figure 5.63. Pump house, circa 1950s, facing north ... 94
Figure 5.64. Feed barn, circa 1950s, facing west ... 95
Figure 5.65. Water silo, circa 1950s, facing southeast ... 95

List of Tables

Table 1.1. Cultural resources revisited during the current survey ... ii
Table 3.1. Previously recorded cultural resources within a one-mile search radius 26
Table 5.1. Site 9RI192 Artifact Summary Table ... 47
Table 5.2. Site 9RI1137/1139 Artifact Summary Table ... 55
Table 5.3. Site 9RI1138 Artifact Summary Table ... 63
Table 5.4. Site 9RI1154 Artifact Summary Table ... 75
1.0 Introduction

On behalf of Cranston Engineering Group, P.C., S&ME has completed Phase II testing at archaeological sites 9RI192, 9RI1137/1139, 9RI1138, and 9RI1154; additional research on historic resource ACP-1; and GPR at the Johnson Cemetery (9RI1165) at the Augusta Corporate Park, Richmond County, Georgia (Figures 1.1 through 1.5). The project area is located east of Mike Padgett Highway (SR 56) and south of Horseshoe Road, near the small community of Mechanic Hill. Work for this project was carried out in general accordance with S&ME Proposal No. 213570, dated April 8, 2021.

Fieldwork for the project was completed intermittently from June through August 2021. The archaeological fieldwork was conducted by Senior Archaeologist Kimberly Nagle, M.S, Frank Carvino, M.A. and Paul Connell, B.A. served as Field Director, and Kelli Hajek, Wyatt Flemming, and Amber Wellings served as Field Technicians. The architectural fieldwork and evaluations were completed by Senior Architectural Historian/Senior Historian Heather Carpini, M.A. and Architectural Historian Monica Hendricks, M.A. Artifacts were analyzed by Ms. Nagle and Mr. Connell; the report was written and graphics were produced by Ms. Nagle and Ms. Carpini.

This project is an Augusta Economic Development Authority (EDA) site and, in support of anticipated federal funding for the site, this report has been prepared in compliance with the National Historic Preservation Act of 1966, as amended; the Archaeological and Historic Preservation Act of 1979; procedures for the Protection of Historic Properties (36 CFR Part 800); and 36 CFR Parts 60 through 79, as appropriate. Field investigations and the technical report meet the qualifications specified in the Secretary of the Interior’s Standards and Guidelines for Archaeology and Historic Preservation (Federal Register [FR] 48:44716-44742), and the Georgia Standards and Guidelines for Archaeological Investigations (Georgia Council of Professional Archaeologists 2019), and the Georgia Historic Resources Survey Manual (HPD 2020). Supervisory personnel meet the Secretary of the Interior’s Professional Qualifications Standards set forth in 36 CFR Part 61.
Project Area Location within the Region

Augusta Corporate Park

Richmond County, Georgia

Sources: Esri, HERE, Garmin, USGS, Intermap, INCREMENT P, NRCan, Esri Japan, METI, Esri China (Hong Kong), Esri Korea, Esri (Thailand), NGCC, © OpenStreetMap contributors, and the GIS User Community
Project Area Location within Georgia
Augusta Corporate Park
Richmond County, Georgia
Project Area Location within Richmond County
Augusta Corporate Park

Richmond County, Georgia

Sources: Esri, HERE, Garmin, USGS, Intermap, INCREMENT P, NRCan, Esri Japan, METI, Esri China (Hong Kong), Esri Korea, Esri (Thailand), NGCC, © OpenStreetMap contributors, and the GIS User Community
2.0 Environmental Setting

2.1 Location

The project area is located in the southwestern portion of Richmond County, approximately one mile southeast of the community of Mechanic Hill and approximately eight miles south of Augusta, Georgia (Figures 1.1 through 1.5). Richmond County, which covers approximately 329 square miles, is bounded by Burke County to the south, Jefferson County to the southwest, McDuffie County to the west, Columbia County to the northwest, and South Carolina to the north and northeast.

The Augusta Corporate Park is roughly bounded by Horseshoe Road to the north, Mike Padgett Highway (SR 56) to the west, the Central Georgia Railroad to the south, and a tributary of McBean Creek to the east. The four archaeological sites (9RI192, 9RI1137/1139, 9RI1138, and 9RI1154) are either in transmission line corridors or areas that have been clear cut within the last five years (Figures 2.1 and 2.2).

2.2 Geology and Topography

The project area is located in the Coastal Plain physiographic province, which is characterized by gently rolling terrain underlain by unconsolidated sediment (Kovacik and Winberry 1989). Topography in the project area ranges from level ridge tops and plateaus to moderately steep slopes adjacent to creeks.

Site 9RI1154 sits on a hilltop overlooking an unnamed tributary of McBean Creek at an elevation of 270 ft above mean sea level (AMSL); site 9RI192 sits on a hillslope heading to an unnamed tributary of Little McBean Creek at an elevation of 260 ft AMSL; site 9RI1137/1139 sits on a hilltop overlooking McBean Creek and its wetlands at an elevation of 190 ft AMSL; site 9RI1138 sits at the base of a hill adjacent to McBean Creek and its wetlands at an elevation of 130 ft AMSL (Figure 1.4).

2.3 Hydrology

The proposed project area is located within the Middle Savannah River drainage basin. McBean Creek and Little McBean Creek are the closest permanent water sources to the four archaeological sites; McBean Creek is located anywhere from 800 feet to 1.6 miles from the sites. McBean Creek is a large tributary of the Savannah River, which is located approximately three miles to the east of the project area.

2.4 Soils

Soils at the four archaeological sites (9RI192, 9RI1137/1139, 9RI1138, and 9RI1154) consist of well drained Troup fine sand (Figures 2.3 through 2.5).

2.5 Climate and Vegetation

The climate of Richmond County is characterized by very hot, humid summers and short, mild winters. The average daily temperatures range from 45° Fahrenheit (F) in January to 82° F in July. The average precipitation for the year is approximately 104 inches, with most of precipitation falling as rain; snow is unlikely, but freezing rain in the winter can be an issue (USDA 1965:1). Vegetation within the four archaeological sites has been clear cut in the last five years (Figures 2.1 and 2.2).
Figure 2.1. Current vegetation at site 9RI192, facing east.

Figure 2.2. Typical vegetation at sites 9RI1137/1139, 9RI1138, and 9RI1154, facing north.
Soils at site 9RI192
Augusta Corporate Park

Richmond County, Georgia

Legend
- Project Area
- Archaeological Site

Soil Type
- Troup fine sand, 5-10%

Source: Esri, Maxar, GeoEye, Earthstar Geographics, USDA, USGS, AerialGRID, IGN, and the GIS User Community

Scale: 1:2,727
Date: 9/6/2021
Drawing Path: T:\ENV\Projects\2021\213570 Cranston_ACP Cultural Resource Work\GIS\2021 GIS\Figures\Figure 2-3 soils.mxd plotted by KNagle 09-06-2021

Drawing Path: T:\ENV\Projects\2021\213570 Cranston_ACP Cultural Resource Work\GIS\2021 GIS\Figures\Figure 2-3 soils.mxd plotted by KNagle 09-06-2021
Soils at sites 9RI1137/1139 and 9RI1138
Augusta Corporate Park
Richmond County, Georgia

Legend
- Project Area
- Archaeological Site
- Troup fine sand, 5-10%

Source: Esri, Maxar, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community
Soils at sites 9RI1154
Augusta Corporate Park
Richmond County, Georgia

Legend
- Project Area
- Archaeological Site

Soil Type
- Troup fine sand, 5-10%

Source: Esri, Maxar, GeoEye, Earthstar Geographics, USDA, USGS, AeroGRID, IGN, and the GIS User Community

Drawing Path: T:\ENV\Projects\2021\213570 Cranston_ACP Cultural Resource Work\GIS\2021 GIS\Figures\Figure 2.5 soils.mxd plotted by KNagle 09-06-2021
3.0 Cultural Context

The cultural context of the region is reviewed below for two purposes: first, to outline previous research in the region, as well as the nature of historic and prehistoric resources that might be expected in the project area, and second, to provide a comparative framework in which to place resources identified within the project area and area of potential effects (APE) in order to better understand their potential significance and NRHP eligibility. The cultural context of the project area includes the prehistoric record and the historic past, which are discussed in this section of the report.

3.1 Prehistoric Context

Over the last two decades there has been much debate over when humans first arrived in the New World. The traditional interpretation is that humans first arrived in North America via the Bering land bridge that connected Alaska to Siberia at the end of the Pleistocene, approximately 13,500 years ago. From Alaska and northern Canada, these migrants may have moved southward through an ice-free corridor separating the Cordilleran and Laurentide ice sheets, to eventually settle in North and South America.

Recently, this interpretation has been called into question, with several sites providing possible evidence for earlier (pre-Clovis) occupations. These sites include Monte Verde in southern Chile (Dillehay 1989; Meltzer et al. 1997), Meadowcroft Rockshelter in Pennsylvania (Adovasio et al. 1979, 1980a, 1980b, 1990), the Cactus Hill (McAvoy and McAvoy 1997) and Saltville (McDonald 2000) sites in Virginia, and the Topper site in Allendale County, South Carolina (Goodyear 2005). Despite the growing number of sites attributed to pre-Clovis occupations, there are still significant problems surrounding each site that preclude their widespread acceptance.

3.1.1 Paleoindian Period (ca. 13,500–10,000 B.P.)

The Paleoindian Period can be tentatively dated from about 13,500–10,000 B.P. At the beginning of this period, most of Georgia was cool and dry, with boreal tundra and spruce-pine forests covering most of the state. By the end of this period, the climate ameliorated, rainfall was more frequent, and the state was covered with deciduous forests that contained beech, elm, hickory, oak, and birch (Anderson et al. 1996; Anderson and O'Steen 1992; Goodyear et al. 1989). It was also during this time that the large megafauna, including mammoth, mastodon, and giant sloth became extinct. It is still not clear whether humans, a meteor strike, or the climate played a more prevalent role in the extinction of these large animals, although it is likely that a combination of environmental change and overhunting contributed to their extinction. Another hypothesis is that a meteor impact occurred roughly 12,900 years ago that may have led to the extinction of both the megafauna and some Clovis populations (West and Goodyear 2008). This hypothesis, however, is still highly controversial.

Most of our knowledge about the Paleoindian Period in the Southeast is based on surface collections and inference rather than controlled subsurface excavations. The limited information we do have, however, suggests that the earliest Native Americans had a mixed subsistence strategy based on the hunting (or scavenging) of the megafauna and smaller game combined with the foraging of wild plant foods. Groups are thought to have consisted of small, highly transient bands made up of several nuclear and/or extended families. Settlements appear to be concentrated along major rivers near the Fall Line and in the Coastal Plain, although it is almost certain that many additional sites along the coast have been inundated by the rise of sea level that has occurred since that time (Anderson et al. 1992; Anderson and Sassaman 1996).
Paleoindian artifact assemblages typically consist of diagnostic lanceolate projectile points, scrapers, gravers, unifacial and bifacial knives, and burins. Projectile point types include fluted and unfluted forms, such as Clovis, Cumberland, Redstone, Quad, and Dalton (Anderson et al. 1992; Justice 1987:17–43). Tools are typically well-made and manufactured from high quality cryptocrystalline rock, as well as Piedmont metavolcanics (Goodyear 1979). Paleoindians traveled long distances to acquire these desirable raw materials and it is likely that particularly favored quarries were included in seasonal rounds, allowing them to replenish their stock of raw material on an annual basis.

3.1.2 Archaic Period (ca. 10,000–3000 B.P.)

Environmental change at the end of the Pleistocene led to changes in human settlement patterns, subsistence strategies, and technology. As the climate warmed and the megafauna became extinct, population size increased and there was a concomitant decrease in territory size and settlement range. Much of the Southeast, during the early part of this period, consisted of a mixed oak-hickory forest. Later, during the Hypsithermal interval, between 8000 and 4000 B.P., southern pine communities became more prevalent in the interriverine uplands and extensive riverine swamps were formed (Anderson et al. 1996; Delcourt and Delcourt 1985).

The Archaic Period has typically been divided into three subperiods, Early Archaic (10,000–8000 B.P.), Middle Archaic (8000–5000 B.P.), and Late Archaic (5000–3000 B.P.), based on changes in projectile point morphology, settlement patterns, and subsistence practices. Each of these subperiods appears to have been lengthy and successful in adapting technology to prevailing climatic and environmental conditions of the time.

Early Archaic (10,000–8000 B.P.)

Diagnostic artifacts of the Early Archaic include a variety of smaller projectile point types such as Big Sandy, LeCroy, Palmer, and Kirk, while the tool kit expanded to include both floral and faunal processing tools like hafted and non-hafted unifacial scrapers, perforators, drills, gravers, hammerstones, grinding stones, and choppers (Coe 1964; Daniel 2001:74). There was also a greater reliance on local lithic sources than during the preceding Paleoindian Period and tools were sometimes made of lesser quality materials (Goodyear et al. 1989:38–39).

During the Early Archaic there appears to have been a gradual, but steady, increase in population and a shift in settlement patterns. In the Carolinas and Georgia, various models of Early Archaic social organization and settlement have been proposed (Anderson et al. 1992; Anderson and Hanson 1988). In general, these models hypothesize that Early Archaic societies were organized into small, band-sized communities of 25 to 50 people whose main territory surrounded a portion of a major river such as the Savannah River (Anderson and Hanson 1988: Figure 2). During the early spring, groups would forage in the lower Coastal Plain and then move inland to temporary camps in the Piedmont and mountains during the summer and early fall. In the late fall and winter, these bands would aggregate into larger, logistically provisioned base camps in the upper Coastal Plain, near the Fall Line. It is believed that group movements would have been circumscribed within major river drainages and that movement across drainages into other band territories was limited. At a higher level of organization, bands were believed to be organized into larger “macrobands” of 500 to 1,500 people that periodically gathered at strategic locations near the Fall Line for communal food harvesting, rituals, and the exchange of mates and information.

Daniel (1998, 2001) has argued that access to high quality lithic material has been an under-appreciated component of Early Archaic settlement strategies. He presents compelling evidence that groups were moving...
between major drainages just as easily as they were moving along them. In contrast to earlier models, group movements were tethered to stone quarries rather than to specific drainages. Regardless of which model is correct, settlement patterns generally reflect a relatively high degree of mobility, making use of seasonally available resources such as nuts, migratory waterfowl, and white-tailed deer.

Middle Archaic (8,000–5000 B.P.)

The Middle Archaic subperiod (ca. 8000–5000 B.P.) coincides with the start of the Hypsithermal, a significant warming trend where pine forests replaced the oak-hickory dominated forests of the preceding periods. It was during this time that extensive riverine swamps were formed and the river and estuary systems took their modern configuration. The relationships between climatic, environmental, and cultural changes during this period, however, are still poorly understood (Sassaman and Anderson 1993:5-14).

This subperiod in the Piedmont represented a time of technological generalization and dispersion, which resulted in an increased population and larger, temporary sites. Large Middle Archaic sites tend to occur along rivers, while numerous small, upland lithic scatters dot the interriverine landscape. Subsistence was likely based on a wide variety of resources such as white-tailed deer, squirrel, nuts, fish, and migratory birds, although direct evidence of Middle Archaic subsistence is generally lacking in Georgia and South Carolina. Unlike the subsequent Late Archaic, shellfish do not seem to have been an important part of the diet, but the presence of manos and matates for grinding plants suggests an increase in plant food harvesting.

Middle Archaic tools tend to be expediently manufactured and have a more rudimentary appearance than those found during the preceding Paleoindian and Early Archaic periods. Diagnostic projectile points of the Middle Archaic include stemmed points, such as Stanly and Morrow Mountain. Ground stone tools such as axes, adzes, grinding stones, and atlatl weights also became more common during the Middle Archaic.

Late Archaic (5000–3000 B.P.)

The Late Archaic subperiod, which lasted from about 5000–3000 B.P., saw a number of important developments in the region, including increasing sedentism, the introduction of soapstone and ceramic vessel technology, the use of pit storage, and possibly the beginnings of small-scale horticulture.

Population growth and local adaptation mark the Late Archaic and reflect a more sedentary lifestyle. In the spring and summer, Late Archaic people gathered large amounts of shellfish. It is not known why this productive resource was not made use of earlier, but one explanation is that the environmental conditions conducive to the creation of shellfish beds were not in place until the Late Archaic. Other resources that would have been exploited in the spring and summer months include anadromous and freshwater fish, white-tailed deer, small mammals, birds, and turtles (House and Ballenger 1976; Stoltman 1974). During the late fall and winter, populations likely subsisted on white-tailed deer, turkey, and nuts such as hickory and acorn. It is also possible that plants such as Cucurbitae (squash and gourds), sunflower, sumpweed, and chenopod were being cultivated on a small-scale basis, but direct evidence for these cultigens is lacking in the region.

The most common diagnostic stone tool of the Late Archaic subperiod is the Savannah River point (Coe 1964), a broad-bladed stemmed point found under a variety of names from Florida to Canada. Other Late Archaic artifacts include soapstone cooking discs, winged bannerstones, cruciform drills, shell tools, worked bone, and most importantly fiber-tempered Stallings Island pottery.
3.1.3 Woodland Period (ca. 3000–1000 B.P.)

The Woodland Period saw a number of important developments in the region, including a gradual increase in population and sedentism; the widespread adoption of ceramic vessel technology; the introduction of bow and arrow technology; the intensification of horticultural activities; the establishment of long-distance trading networks; and the use of conical burial mounds for interring the dead. Like the preceding Archaic Period, the Woodland is traditionally divided into three subperiods: Early Woodland (3000–2500 B.P.), Middle Woodland (2500–1500 B.P.), and Late Woodland (1500–1000 B.P.). Each of these subperiods, in Georgia, is defined by the way pottery was made and what applied decorations were used on the pottery.

Early Woodland (3000–2500 B.P.)

By 2500 B.P., pottery was used throughout most of the Southeast and there was a proliferation of pottery styles in the Carolinas and Georgia. In the Coastal Plain portions of the Savannah River region, Refuge phase ceramics are indicative of the Early Woodland subperiod. This pottery is characterized by coarse sand-tempered wares with surface treatments that include simple stamped, punctate, plain, and dentate-stamped (DePratter 1979, Sassaman 1993, Williams 1968). Diagnostic bifaces of this period include Otarre, Swannanoa, Little Bear Creek, Thelma, and Coosa stemmed points and Yadkin Triangular points (Anderson and Joseph 1988; Coe 1964:123–124, Sassaman et al. 1990).

The people of the Early Woodland subperiod began to build larger, more permanent villages that were situated close to streams and trade networks were being established throughout the Southeast. Subsistence data indicate a continuation of the Late Archaic diet, including white-tailed deer, bear, small mammals, reptiles, and freshwater fish and groundstone manos, matates, and nutting stones were used to process plant foods (Hanson and DePratter 1985; Marrinan 1975). One major difference is that shellfish do not appear to have been an important part of the diet.

Middle Woodland (2500–1500 B.P.)

Middle Woodland pottery in coastal areas of South Carolina, Georgia, and Florida is represented by the Deptford pottery series, which dates from about 2800–1500 B.P. This coarse sand/grit-tempered pottery represents a continuation of the Early Woodland Refuge series and is often found in association with Refuge pottery. Surface treatments include plain, check stamped, linear check stamped, cordmarked, and simple stamped applications (DePratter 1979; Waring and Holder 1968).

In the upper Coastal Plain and Piedmont, Early/Middle Woodland pottery consists of the Yadkin series, which is characterized by its crushed quartz temper and cordmarked, fabric-impressed, check stamped, linear check stamped, and simple stamped surface treatments (Blanton et al. 1986, Coe 1964, Ward and Davis 1999). Yadkin Large Triangular points carry over from the Early Woodland Period into the Middle Woodland Period and are the most common diagnostic projectile points of the Middle Woodland (Coe 1964), although Trinkley (1989:78) mentions a very small, stemmed point he calls Deptford Stemmed. Other artifacts found in Middle Woodland assemblages include clay platform pipes, ground and polished stone ornaments, engraved shell and bone, bone tools, bifacial knives, and shark tooth pendants (Sassaman et al. 1990:96, Waring and Holder 1968).

Middle Woodland occupations in coastal areas tend to follow Milanich’s “seasonal transhumance” model for the Deptford period in Florida (Milanich 1971, Milanich and Fairbanks 1980), which posits that in the winter and
summer months groups moved to the coast and lived in small, semi-permanent villages adjacent to tidal creeks and marshes. From these locations they would fish, gather shellfish, and exploit a variety of other marine and estuarine resources. In the fall, small groups moved inland to terraces adjacent to swamps to gather nuts and hunt white-tailed deer (Cantley and Cable 2002:29; Trinkley 1989:78–79). Horticulture is thought to have increased in importance during this period, with plants such as maygrass, goosefoot, knotweed, and sunflower being harvested.

In contrast to Milanich’s model, evidence from the G.S. Lewis West site (38AK228) in Aiken County, South Carolina, (Sassaman et al 1990:96–98), located approximately 12 miles from the current project area, suggests a year round settlement occupied by a small resident population. Over 500 features, including pits, posts, human burials, and dog burials, were found at the site. White-tailed deer was the primary food source, with alligator, turtle, fish, turkey, freshwater mussels, hickory, and acorns also being found (Sassaman et al. 1990:96). Based on the evidence at G.S. Lewis and surrounding sites at the Savannah River Site, Sassaman et al. (1990:98) suggest a pattern where small villages were occupied on a year-round basis, with smaller outlying sites representing seasonally occupied logistical camps.

Late Woodland (1500–1000 B.P.)

In general, Late Woodland societies tend to be marked by an increasingly sedentary lifestyle and improvements in food storage and preparation technologies, although hunting and gathering still remained important. Expansion of the previously limited production of agricultural crops like maize, beans, squash, pumpkins, and sunflowers occurred during this subperiod.

The Late Woodland subperiod is difficult to distinguish from the Middle Woodland. Cord marking appears to be added to the surface treatments of Deptford pottery during the Late Woodland, however, cord marking alone is a poor discriminator between Middle and Late Woodland (Sassaman et al. 1990). There is also a decline in stamped Deptford ceramics during the Late Woodland, which is a more commonly used typological break. In the upper Savannah River Valley and surrounding areas of the Piedmont, a variety of complicated stamped Swift Creek and Napier period ceramics are found in Late Woodland assemblages. Potters carved intricate designs into wooden blocks, then stamped the designs on the still moist ceramic vessel. Also found in the upper Savannah River Valley are the later stages of the Yadkin-Uwharrie sequence proposed by Coe (1964). Uwharrie ceramics include plain, brushed, cordmarked, textile-impressed (including net and fabric), simple stamped, and curvilinear complicated stamped types that are tempered with sand and crushed quartz inclusions (Anderson et al. 1996). Associated lithic artifacts include small and medium sized triangular and Jacks Reef projectile points, possibly indicating the introduction and wide spread use of the bow and arrow.

3.1.4 Mississippian Period (ca. 1000–500 B.P.)

The Mississippian Period saw dramatic changes across most the Southeastern United States. Mississippian societies were complex sociopolitical entities that were based at mound centers, usually located in the floodplains along major river systems. The flat-topped platform mounds served as both the literal and symbolic manifestation of a complex sociopolitical and religious system that linked chiefdoms across a broad network, stretching from the Southeastern Atlantic Coast, to the Spiro Mounds in Oklahoma in the west, to as far north as Aztalan in Wisconsin. Major mound centers in the Savannah River basin include Irene near the coast; Lawton, Silver Bluff, and Hollywood in the interior Coastal Plain; Rembert and Beaverdam in the central Piedmont; and Chauga, Tugalo, and Estatoe in
the Upper Piedmont. While Mississippian subsistence was focused to a large extent on intensive maize agriculture, the hunting and gathering of aquatic and terrestrial resources supplemented Mississippian diets (Anderson 1994).

Diagnostic artifacts of the Mississippian period include small triangular projectile points, ground stone tools, and polished stone objects. Various ceremonial items were manufactured from stone, bone, shell, mica, and copper and they were used as symbolic markers of chiefly power and status. Mississippian ceramic styles were also very different from the preceding Woodland Period, which has allowed archaeologists to differentiate this period into temporal subdivisions and distinct cultural areas.

Mound centers were surrounded by outlying villages that were usually built along major rivers, to take advantage of the rich floodplain soils. Smaller hamlets and farmsteads dotted the landscape around villages and provided food, tribute, and services to the chief in return for protection and inclusion in the sociopolitical system. Mound centers have been found along most major river systems in the Southeast, and South Carolina and Georgia are no exceptions. Major Mississippian mounds in the area include the Hollywood, Lawton, and Mason’s Plantation mound group located in the central Savannah River Valley (Anderson 1994). There is increasing evidence that territorial boundaries between chiefdoms were closely maintained during the Mississippian period. Within the Middle Savannah River Valley, three phases of Mississippian occupation have been identified: Lawton (A.D. 1150–1250), Hollywood (A.D. 1250–1350), and Sliver Bluff (A.D. 1350–1450) (Sassaman et al. 1990).

3.2 Historic Context

The project area is located north of McBean Creek, in the southeastern portion of Richmond County. Situated west of the Savannah River, the project tract is near the Georgia-South Carolina boundary, where Richmond County abuts Aiken County, South Carolina and just north of Richmond County’s boundary with Burke County, Georgia. Richmond was one of the original eight counties established in Georgia, in 1777, to replace the colonial parish government system; it originally encompassed territory that included all or parts of Columbia, Glascock, Jefferson, McDuffie, and Warren counties, and it acquired its current size and boundaries in 1790. The history of the county has been significantly influenced by Augusta, the county seat, as well as the largest and most prominent city within the county.

3.2.1 Exploration and Early Settlement

The project area was part of St. Paul Parish beginning in 1758, when a colonial act divided the Georgia territory into eight parishes under the Church of England, located along the eastern colonial boundaries, the Atlantic Ocean and the Savannah River. Located on a high bluff, across the Savannah River, was the prominent Native American settlement of Savano Town. Although the Georgia colony wasn’t established until 1732, by 1700, white colonists had moved into the area and established a profitable deerskin trade, encouraged by South Carolina’s colonial government in Charleston. The trade networks that they established with the native tribes based near Augusta, exchanging manufactured European goods for skins and Indian slaves, would provide the economic basis for the colony during the early eighteenth century. In 1715, white encroachment onto traditional tribal lands caused the Yamasee to attack English settlements in South Carolina; lasting for nearly two years, the Yamasee War was devastating to the new colony, resulting in the deaths of over 400 colonists and significant loss of property, as well as discouraging settlers from moving into more rural areas. The conflict convinced the colonial government to build fortifications to protect its trading interests in the interior, resulting in the construction of Fort Moore on the bluff where Savano Town was located. Begun in 1715, the fort served as a measure of protection and a trading center for half a century, until its abandonment in 1766. Native American conflict and the potential threat from the
Spanish in Florida, to the south, led to the chartering of Georgia, as the last of the original 13 colonies, in 1732, as a buffer for the profitable colony of South Carolina (Polhemus 1972; Edgar 1998:101; Vandervelde 1999:14–16; Jones and Dutcher 1890).

Indian traders roamed through inland areas of the colonies during the seventeenth and early eighteenth centuries, however, settlement was primarily concentrated along the coast during the first years of occupation. When the European colonists began to expand their territory, as the population increased, they did so by moving slowly westward along the coastal rivers (Kovacik and Winberry 1989:76). The area north of the Savannah River, in South Carolina, had an established settlement before Georgia was granted its colonial charter; New Windsor Township was established along the Savannah River, encompassing both Fort Moore and the Savano Town site and, by 1736, about 100 settlers had moved into the township. This new settlement provided an impetus for James Oglethorpe, the founder of Georgia, to establish a new inland town to compete with the South Carolina community. Augusta, the second town established within the colony, was founded in 1736, under the direction of Oglethorpe. Although located further inland, away from the coastal transportation routes and major population centers, Augusta’s position along the Savannah River allowed it to develop as a trading post, where Indian traders from South Carolina began coming to exchange the goods that they acquired from the Native American tribes, leading to the development of a profitable deerskin trade. In 1739, a fort was constructed near the new settlement of Augusta and the town was laid out by colonial surveyor Noble Jones; the original plan of Augusta was three streets wide by four streets deep and organized around a central square (Jones and Dutcher 1890; Lee 2000).

European settlement along the Savannah River, near Savano Town and New Windsor Township, had begun in the late 1600s, but migration to more inland areas, including those south of the Savannah River, was not documented until the 1730s. After the founding of Augusta, more favorable trade conditions with the Georgia colony prompted a large number of Native Americans to bring their trade business to Augusta over Savano Town across the river. By 1749, the growth of the Augusta settlement prompted the colony to build a church there and petition for a minister, who arrived in 1751, in the person of Jonathan Copp (Jones and Dutcher 1890).

The French and Indian War boosted the population of Augusta, as residents from surrounding areas took refuge in the fort. Following the war, the population in and around the town continued to expand as soldiers, who had seen the Georgia territory during combat, migrated to the area, looking for the cheap, abundant land that surrounded Augusta. Coming from colonies to the north, including Virginia and the Carolinas, many brought the tradition of tobacco cultivation to the Augusta area, resulting in the establishment of a tobacco cash crop system before 1800. Although slavery was originally illegal in Georgia, by the 1750s it had become a widespread practice, allowing for the development of large scale farming operations. Early homesteads, outside of the boundaries of Augusta, were generally concentrated along creeks and streams, with colonists choosing land in close proximity of one another, usually within 10 miles of their neighbors; one of the earliest property owners in the area was Locklan McBean, who was the namesake of McBean Creek (Jones and Dutcher 1890; Lee 2000). A 1780 map of the area shows New Windsor Township and Augusta, along with mills along the Savannah River and its tributaries (Figure 3.1).

At the beginning of the American Revolution, Augusta was one of the towns located furthest west within the colonies, making it a strategic outpost in the western front conflict with British-supporting Native American groups. There were two noted conflicts within the Augusta area during the war. In 1780, British forces under Colonel Thomas Brown took control of Augusta; when Patriot soldiers, under Colonel Elijah Clarke sought to oust the British from Augusta, his militia was overpowered by a combined British and Indian force at McKay’s Trading
Post, also referred to as the White House, after a siege that lasted five days. A number of wounded soldiers were taken prisoner by the British and 13 of them, including a captain, were hanged by Colonel Brown on the steps of the White House, while the remaining prisoners were turned over to the Native Americans. The following May, the Patriot militia under General Andrew Pickens put three fortifications in the Augusta vicinity – Fort Galphin, south of the city on the Savannah River; Fort Grierson, at the present day corner of 11th and Reynolds streets; and Fort Cornwallis (McKay’s Trading Post), at the present day corner of Reynolds and Washington streets – under siege. The siege lasted from May 22 through June 5, when Colonel Brown surrendered. From the victory, the Patriots gained supplies, including weapons and ammunitions, and a large quantity of Indian trade goods; additionally, the end of the siege and the defeat of the British forces increased the momentum of the Patriot cause and contributed to the British retreat out of the southern theater (Reynolds 2012).

During the Revolution, the town boundaries of Augusta were expanded to the east, south, and west and, in 1777, the old parish governmental system was abolished and the original eight counties of Georgia were established. Augusta was named as the county seat of Richmond County and eventually served as the capital of the newly established state of Georgia, from 1786 through 1795. The growth of the town and its governmental position attracted prominent political men and business owners, including George Walton, Christopher Fitzsimmons, and Henry Turkenett. The decade following the American Revolution was highlighted by a 1791 visit to Augusta from President George Washington, who stopped for breakfast at the inn of James Fulcher, a plantation owner in Richmond County, which was located along McBean Creek (Jones and Dutcher 1890).

3.2.2 Antebellum Period

The end of the American Revolution ushered in a period of significant growth for the interior regions of the southern colonies. In many cases, soldiers were offered unclaimed backcountry lands as payment for their service during the war. Some soldiers chose to settle on these lands, while others sold them to families looking to migrate inland (Williams 1971). Prior to the American Revolution, the Richmond County area had a number of larger-scale tobacco growers, along with some small farmers, who primarily participated in subsistence based agriculture. Eli Whitney's cotton gin, patented in 1793, would significantly alter the agricultural character of region. A South Carolina judge indicated the importance of the cotton gin with his explanation that “the whole interior of the southern states was languishing, and its inhabitants emigrating for want of some object to engage their attention and employ their industry. We cannot express the weight of obligation which the country owes to this invention; the extent of it cannot be seen” (Edmonds 2001:10).

With locally made gins becoming available in the early 1800s, short-staple cotton became the primary crop in most of area. The cotton gin made production of this type of cotton easier and more profitable by significantly reducing the effort required to separate the seeds from the fibers. The initial capital investment needed to grow cotton was small, since the only tools required were a plow, hoe, gin, and baler. Many small farmers did not have a gin or baler of their own, but they could pay a small fee to use their neighbor’s equipment, allowing them to participate in the new cotton growing boom. The enormous profits available from cotton growing and processing during the early nineteenth century influenced a large number of upcountry farmers to engage in this activity. The result was a change in agricultural practices, from primarily subsistence-based farming in the 1700s to the development of large inland cotton-producing plantations during the early 1800s (Kovacik and Winberry 1989:85–89).

Cotton production began with the tilling of land in early spring, followed by the liberal sowing of seeds shortly afterwards. In July, the young crops were thinned, reducing the number of plants to one per square foot. With
periodic weeding, the plants were allowed to grow until they were ready to be harvested in the fall, when up to three harvests were made. After harvesting, the cotton fibers were removed from the seedpod and seeds; the ginned cotton was then generally made into bales of approximately 400 pounds each and shipped to market (Richter and Markewitz 2001:122).

Cotton would soon become the staple of Georgia agricultural economy, where it could be grown on large tracts of land; it would dominate the landscape of the area surrounding Augusta, including both northern Georgia and southwestern South Carolina. By 1801, Georgia was producing nearly 3.5 million pounds of cotton and by 1812, Georgia and South Carolina combined produced three-quarters of the cotton in the entire country, over 60,000,000 pounds (Hurt 2002; Edgar 1998:271; Benson 2006:73). The development of a profitable staple crop allowed the area to recover from the devastating effects of the American Revolution, which had ravaged a large percentage of agricultural lands (Edgar 1998:244). The desire to acquire more land for cotton cultivation resulted in white settlers pushing further inland and bringing more land under their control. High profits allowed cotton farmers to purchase more land and slaves, ultimately creating a plantation-based economy in much of the area (Edgar 1998:271).

Although large-scale cotton production began in South Carolina earlier, and slavery was later to take hold in Georgia because of earlier prohibitions on the practice, by the end of the first decade of the nineteenth century, cotton agriculture had gained a solid foothold in the Piedmont region of Georgia and South Carolina, including Richmond County. By 1803, cotton production had spread into northern Georgia, and by 1810, the Piedmont region had become one of the primary cotton producing areas of the state (Edgar 1998:271). By 1840, Richmond County was producing over 700,000 pounds of cotton; but by 1850, cotton production had dropped to 434,800 (Social Explorer 2021).

The adoption of cotton as a staple crop led to a demographic change in the region, although not as significant as happened in other cotton growing areas. In 1790, Georgia had a total population of 82,548, with approximately 35.5 percent of the population, or 29,296 people, being enslaved. During the waning years of the eighteenth century, the enslaved population was generally concentrated in the coastal region and areas with larger plantations, including around Augusta. In Richmond County, slaves made up 36.4 percent of the county’s total population. By 1830, Georgia’s population had grown to 516,823, with slaves accounting for 42.1 percent of that number, and by 1860, approximately 43.7 percent of the state’s 1,057,286 residents were slaves. Richmond County’s slave population had outstripped its free population by 1830, numbering 6,246 of the 11,644 residents and accounting for 53.6 percent of county residents; by 1860, however, the ratio of slave to free person had shrunk, with slaves only making up 39.4 percent of the county’s 21,284 total population (Social Explorer 2021). The drop in slave numbers can be partially attributed to the westward expansion of Georgia’s population, into previously unclaimed lands, and the increased settlement in Alabama and Mississippi in the mid-1800s. Cotton planters saw the availability of larger expanses of previously uncultivated land and were some of the first residents to move from the earlier settlements to the newly coveted areas, accounting for the drop in slave numbers despite the overall rise in population (Jones and Dutcher 1890).

Although these numbers show the growth of slave ownership in the area, and much cotton was grown on large plantations by landowners who had numerous slaves, not all residents of the area fit this model. While the number of families owning slaves grew during the antebellum period, from 25 percent in 1800 to 40 percent in 1820, most families owned less than three slaves and there were still a large number of white families who did not own any slaves (Edmonds 2001:20; Edgar 1998:272). Unlike other staple crops, such as rice, cotton could be grown by
farmers on small patches of land the same as large landowners did on plantations. These farmers toiled in the fields alongside their families and one or two slaves to produce the cotton (Benson 2006:74). With the promise of high profits, farmers abandoned their traditions of subsistence farming. Acreage that had once been utilized for food crops that fed the farm's residents was now devoted to cotton. Between 1850 and 1860, the percentage of area farms that were self-sufficient fell from about 75 percent to around 25 percent (Edgar 1998:275).

The reliance on cotton as a singular cash crop caused serious depletion of the nutrients in the soil and severe erosion. Although cotton was sometimes rotated with other crops, more often fields were abandoned when their yields fell because land was so plentiful. John Drayton noticed this practice, stating that “when one piece of land has been exhausted by agriculture, another has been cleared of woods for similar purposes” (Edgar 1998:275). Fertilizers were not commonly advocated until the mid-nineteenth century and, even then, they were not widely used by farmers and contemporary commentators noted the poor soil conditions that were developing as a result (Richter and Markewitz 2001:122).

Cotton was also a somewhat unreliable crop during the first half of the nineteenth century. Early in the century, farmers reaped large profits from good cotton harvests sold at high prices. In 1818, cotton was selling for about 30.8 cents per pound; the Panic of 1819, however, caused economic depression throughout the country and, by 1823, the price per pound of cotton had dropped to 12 cents. In the years between 1826 and 1832, cotton averaged only nine cents per pound, but between 1832 and 1837, the price rose steadily, hitting 17 cents per pound in the beginning of 1837. By May of that year, another economic depression had hit the United States and cotton prices again fell, hitting a low of eight cents per pound. Although the 1840s were wrought with a series of floods and droughts that destroyed large portions of the cotton crop, 1849 was a particularly good harvest, not only for cotton, but also for corn, oats, and sweet potatoes, which gave farmers hope of economic recovery. A severe drought in 1850, however, brought another poor cotton year and low prices (Edmonds 2001:20–22). Planters during this period were relying on a long term credit system, buying on credit throughout the year until they sold their cotton crop. Bad market prices undermined this credit and farmers began bringing more acres under cultivation for cotton to try to increase their profits (Edmonds 2001:23).

One of the most significant technological advances of the early 1800s was the railroad, which made transportation of people and goods cheaper and more efficient, and allowed the economy of Augusta to grow, despite the steady loss of many large-scale area farmers. South Carolina was at the forefront of railroad development in the United States and the construction of that state’s first railroad played an important role in the growth of the Augusta and Richmond County area. Railroads allowed cotton from the region to be easily transported to markets for export and finished goods to flow into the region. Additionally, the railroad allowed nearby mills to develop into successful enterprises, as the raw cotton from farms could be brought to the mills and the finished cloth and yarn could be transported to Charleston or Augusta. The South Carolina Rail Road and Canal Company (SCRRCC) was incorporated in 1827 and sought to reinvigorate Charleston’s commercial port status by linking trade in the western portion of the state, which was going to Augusta at the time, to the port city. The planned route ran from Charleston to Hamburg, which was directly across the Savannah River from Augusta, and the 136-mile track was the longest steam locomotive railroad in the world when it was completed in 1833. Shortly after the completion of the South Carolina Railroad, the Georgia Railroad was chartered to build a line from Augusta westward to Athens, and then toward the future settlement of Atlanta. This line began construction in Augusta in 1835 and the 39 miles of track to Athens was completed in December 1841; a 132-mile extension, to Atlanta, was finished four years later (Jones and Dutcher 1890; Lee 2000).
Mills had been built along rivers and streams in the area since the eighteenth century; these were often small enterprises used for sawing lumber or processing the crops of a single farm, such as milling corn and grinding wheat. Mill owners sometimes allowed neighbors to utilize their facilities, often for a portion of the products, but by the turn of the nineteenth century some of these mills had grown into larger, more significant enterprises. These mills took advantage of the vast amount of water power available in the region. In 1845, the Augusta Canal was constructed to supply water power to manufacturing establishments in Augusta, including cotton mills, iron works, and flour mills. The canal, proposed by Henry Cumming, built on the successful industrial example of Lowell, Massachusetts. The earliest industries consisted of a saw mill and a gristmill, as well as the Augusta Factory, and they benefitted from the available hydroelectric power supplied by the canal. The Augusta Canal was one factor that allowed the city to develop into one of the few industrial cities in the south prior to 1860 (Jones and Dutcher 1890; Lee 2000; Covington 2011).

3.2.3 Civil War and Reconstruction

Although the Civil War officially began with the Confederate shelling of Fort Sumter, major battles did not begin until nearly seven months later. Early in 1861, while excitement for the war was high and Southerners were rallying to the Confederate cause, companies of men, both young and old, traveled to the coast to help defend Charleston and other coastal settlements. Regiments from the region gathered and drilled, before eventually heading out to campaigns in Virginia and other states; at least 25 companies of men were organized in Richmond County. Women in the counties organized relief and aid organizations, raising money and performing whatever services they could to help the war effort and the soldiers (Edgar 1998). Augusta played an important part in the Civil War, as home of the Confederate States Powder Works, which was established by the Confederate government on the Augusta Canal. Begun in 1862, the powder works eventually spanned two miles along the canal banks and consisted of 26 buildings, with the capacity of producing approximately 7,000 pounds of powder per day, for a total production of 2,750,000 pounds of powder while it was in operation. As one of the few industrial cities in the Confederacy, Augusta was also a significant manufacturing hub for the south, providing many commodities, including shoes, cotton goods, and food. Although no battles were fought within county boundaries, there were many residents who felt the reality of the war through shortages of food and supplies, and the loss of loved ones (Jones and Dutcher 1890; Lee 2000; Covington 2011).

Augusta was one of the few prominent cities in Georgia and the Carolinas to be spared significant destruction at the hands of General William Tecumseh Sherman, as he bypassed the city on his marches from Atlanta to Savannah and from Savannah to Columbia. Contemporary records observed that Augusta was in “better condition than any other cities in this sector of the south” at the conclusion of the war (Augusta Chronicle December 1865). In fact, the population of the city had doubled from its prewar number and the main enterprises were able to recover and grow relatively quickly, without having to recover from devastation and with available capital (Jones and Dutcher 1890; Lee 2000; Covington 2011).

The first decade following the end of the Civil War was better in Augusta than it was in a number of other areas in the South, as it was spared a large amount of destruction and devastation. Augusta began expanding, as older villages around it developed into suburbs of the city, often centered on manufacturing establishments or settled along ethnic lines. Existing industry largely recovered after the war and industrial growth began in the 1870s. In 1875, the Augusta Canal was enlarged and expanded, and new textile mills were constructed (Jones and Dutcher 1890; Lee 2000; Covington 2011).
In many rural areas of Georgia, Reconstruction brought significant changes. Much of the wealth of the planter class had been based on the value of their slaves. With the abolition of slavery at the close of the Civil War, many planters found themselves in significant debt. Planters also found themselves without a readily available free workforce, and paying wages to former slaves would only add to their financial difficulties. Additionally, many former slaves moved away from their plantations, often looking for family members who had been sold before the war, while others simply refused to work for their former owners. In addition to labor shortages, weather wreaked havoc on postwar crops, resulting in poor harvests in five out of the first six years following the end of the Civil War (Benson 2006:76; Baker 1931:44; Bellardo 1979:x).

Buried under large amounts of debt, many former planters and small farmers lost their lands to foreclosure. In the decade following the Civil War, two types of arrangements emerged — tenancy and sharecropping — as landless farmers, both black and white, sought arrangements that would allow them to continue farming to support their families. The newly freed black slaves were forced into these arrangements because they had no land, little money, and few other options. As the 1800s drew to a close, many white farmers succumbed to large debts and also became tenants for large landholders. Two categories of tenancy developed, cash tenants and share tenants. Cash tenants provided their own tools and seed, gaining ownership of the crop they produced while paying rent on their house and land to the landlord. Sharecroppers could not afford their own tools or seeds; the landlords supplied these items and subtracted their value from the farmer’s share of the crop. Both systems resulted in many small farmers living meager existences (Orser 1998:57).

By 1880, tenancy arrangements accounted for approximately 45 percent of all farms operated in the state (Social Explorer 2021). In Richmond County, there were 803 farms, of which 480 (59.8 percent) were operated by owners. The remaining farms were cultivated under tenancy arrangements, with 13.6 percent let out as fixed price rentals and 26.6 percent farmed under sharecropping arrangements. By 1890, 53.5 percent of Georgia farms were operated by tenants and, at the turn of the century, 60.2 percent of the state’s farms were operated by either cash or share tenants. In 1890, of the 872 farms in Richmond County, 37.5 percent were operated by tenants: 22.5 percent as cash tenants and 15 percent by sharecroppers. In 1900, the number of farms in the county had increased to 1,053, and 48.9 percent were operated under some type of tenancy arrangement. The ownership rates were higher for white farmers than black farmers, however, with 35.5 percent of white, but only 26.6 percent of black farms, operated by owners (Social Explorer 2021).

Throughout the state, large farms were being divided into smaller units and let out to either tenants or sharecroppers. In 1860, the average farm size in Georgia was 494.5 acres. By 1880 it had decreased to 188 acres and at the turn of the twentieth century it was down to 117.5 acres (Social Explorer 2021). In 1860, 34.5 percent of Richmond County’s 409 farms were over 100 acres in size and 8 of these farms were over 1,000 acres. By 1880, Richmond County had an average farm size of 150 acres, 42 percent of crops in the county were grown on farms between 20 and 100 acres in size, and 92.4 percent of county farms were under 500 acres. Ten years later, this average had dropped to 128 acres and, by 1900, the average size of farms Richmond County was 110.1 acres, near the state average (Social Explorer 2021).

Cotton continued to be grown in the area throughout the second half of the nineteenth century. Because of its scarcity, in 1866 cotton was selling for 66 cents per pound; by 1869, the price had fallen to 31.75 cents per pound and to 20 cents per pound by 1871. These prices were still higher than during many of the prewar years, so farmers continued to grow cotton in an effort to increase their income. By 1890, when cotton production levels
equaled those of 1860, the price per pound fell significantly and more farmers faced foreclosure and were forced into tenancy arrangements (Edmonds 2001:27–32; Edgar 1998:428).

The late nineteenth century brought changes to the rural areas of Richmond County and continuation of the antebellum development trend within the city of Augusta. Textile trade and manufacturing became one of the primary enterprises in Augusta, leading to the founding of the Augusta Cotton Exchange in 1874. The expansion of the canal allowed for the continued use of the Augusta Factory and the construction of additional factories, Enterprise Mill, Sutherland Mill, King Mill, and Sibley Mill. Local newspapers, as well as national publications, praised the progress in Augusta and heralded it as an example of the "New South" ideal that was the popular rhetoric in the late 1800s (Covington 2011).

3.2.4 Twentieth Century

The twentieth century brought many changes to the area. During the early twentieth century, the lands of rural Richmond County were still primarily used for agriculture. Cotton remained the primary crop, with estimates as high as two-thirds of the acreage devoted to cotton. Farmers also grew corn on their lands and this took up most of the remaining acreage. Other food crops were grown in small quantities, including oats and sweet potatoes for home consumption (Benson 2006:78). Cotton had become profitable again in the years preceding World War I, with a record harvest in 1914. However, the nearly singular production of cotton in the area had "reduced the soil's natural productivity, [causing] immeasurable damage through erosion and loss of topsoil, siltation of streams, and flooding" (Edmonds 2001:116). Another major problem for the cotton farmers was the boll weevil, which reached the area around 1919; by 1921, it was beginning to cause widespread devastation (Edmonds 2001:117–119).

Similar to the situation during Reconstruction and the late 1800s, many of the farmers in rural Richmond County did not own the land they worked on. Instead, they were either renters or sharecroppers, renting the land and an associated residence from a large landowner in exchange for either cash or a portion of the yearly crop. Essentially, there were five classes of agricultural workers. Owners held the legal title to the land they farmed, while on the opposite end of the spectrum were squatters who lived on land without the owner's permission. Between these two categories fell renters, who paid cash for the use of a house and the right to farm a tract of land; tenants, who paid a specific portion of their crop yield for a horse and the right to farm a tract of land; and sharecroppers, who borrowed all necessary farming implements from the landowner and essentially sold their labor for the right to farm a tract of land, live in a house, and receive a small portion of the crop they produced (Blackwell 1937:23). In this region of Georgia, the majority of farmers did not own their land, yet neither did many qualify as squatters. Instead, during the early twentieth century, most agricultural families in this area fell into the three middle classifications.

Although conditions for many residents of Augusta and Richmond County were better than those in surrounding areas during the early twentieth century, the Great Depression created significant hardship. The portions of the county outside the town of Augusta remained rural. For the farmers who still owned land, the pressure of debt increased and the number of foreclosures rose. Sharecroppers and tenant farmers also suffered, as landowners tried to squeeze as much profit as possible from their lands. However, by 1930, tenancy levels within the county had reached a relatively stable level. The number of farms had decreased slightly, to 967, but the acreage of farmland had decreased by almost 18,500 acres, or 16 percent. As the twentieth century progressed, farmers began to utilize crop rotation strategies and started planting more vegetables. Cotton production in the early
1930s remained around 20,000 bales per year, but never met pre-boll weevil levels. During the middle portion of the century, mechanization and corporate farming increased the average acreage of farms (Social Explorer 2021).

The failure of cotton crops, due to both the boll weevil and poor soil conditions, caused many residents of surrounding counties to leave and look for new opportunities elsewhere, including at the multiple textile manufacturing facilities in Augusta and nearby Aiken County, South Carolina. While other counties had declining populations during the early twentieth century, Aiken County’s population increased slowly but steadily, from around 53,700 residents in 1900 to over 81,000 people in 1940 (Social Explorer 2021). The county was becoming more urbanized, with the urban population growing from 42,686 residents (79.4 percent of the county population) in 1900 to 66,342 people (90.1 percent of the county population) in 1930, before declining slightly, to 65,919 (80.5 percent) in 1940 (Social Explorer 2021).

Multiple developments in the county and surrounding areas affected the growth of Augusta and Richmond County during the mid-twentieth century. In the 1930s, the establishment of Augusta National Golf Course, west of the contemporary boundary of Augusta, and the founding of the Master’s Golf Tournament, allowed tourism to develop as an economic base for the county. Camp Gordon was established south of Augusta in 1940, prior to the United States entering into World War II, and soldiers who were stationed at the camp increased the population of the area; following World War II, the camp became Fort Gordon, a permanent installation. In 1950, the federal government acquired a large amount of land in the southern portion of Aiken County, just across the Savannah River from Richmond County, and began constructing the Savannah River Plant. The plant was a research facility where nuclear experiments were conducted and where components of nuclear bombs were built. The plant was completed in 1952 and drew many workers to the area, both those who worked on the construction of the facility and those who worked in the plant itself. Between 1950 and 1960, the population of Richmond County grew from nearly 109,000 residents to 135,601 (Social Explorer 2021).

3.2.5 McBean

The project area is located in a portion of Richmond County which has long been associated with the small community of McBean, although that name began disappearing from maps in the mid-twentieth century. McBean was named for McBean Creek, the southern boundary between Richmond County and Burke County; the creek itself was named for one of the early landholders in the area, Locklan McBean. In 1850, the McBean Company was granted a charter by the Georgia General Assembly to harness the water power of McBean Creek “in the manufacture of various fabrics composed of cotton or wool, or both; also for working in wood or iron, or other metal, and for operating a grist-mill and saw-mill”; however, manufacturing enterprises at McBean were never successful on the large scale and, in 1859, the former Augusta Manufacturing Company assumed the charter of the McBean Company and transferred the location of the charter to the city of Augusta, becoming the Augusta Factory (Jones and Dutcher 1890:418). McBean became a post office and a depot stop on the Augusta and Savannah Railroad during the mid-nineteenth century and remained a small community on the railroad line throughout the late 1800s and early 1900s (Candler and Evans 1906). Following the Civil War, during the Reconstruction period, the area was part of Military District 124, a designation that was used on maps into the 1960s. Little has been recorded on the history of the McBean area, although census records and newspaper articles indicate that the community was comprised of a mixture of white and black residents in the late nineteenth and early twentieth centuries, with blacks holding the majority in the area. The actual location of McBean is at the intersection of the railroad and Savannah Road (present day SR 56/Mike Padgett Highway), southwest of the project area and Little McBean Creek, however the project area is most closely associated with the McBean community.
3.3 Background Research

A background literature review and records search was conducted by using the subscriber level membership associated with the Georgia’s Natural, Archaeological, and Historic Resources Geographic Information System (GNAHRGIS), a GIS-based program with information about Georgia’s Historic Resources. The area examined was a one-mile radius around the project area (Figures 3.1 through 3.3).

A review of the files and records of GASF and of the NAHRGIS indicated that 33 archaeological sites and one structure have been identified within a one-mile radius of the project area (Figures 3.1 through 3.3, Table 3.1).

<table>
<thead>
<tr>
<th>Resource No.</th>
<th>Description</th>
<th>NRHP Eligibility</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>9RI190</td>
<td>Historic house site; Prehistoric isolate</td>
<td>Additional Work</td>
<td>GNAHRGIS</td>
</tr>
<tr>
<td>9RI191</td>
<td>Historic artifact scatter; Prehistoric lithic scatter</td>
<td>Additional Work</td>
<td>GNAHRGIS</td>
</tr>
<tr>
<td>9RI192</td>
<td>Prehistoric chert outcrop</td>
<td>Additional Work</td>
<td>GNAHRGIS</td>
</tr>
<tr>
<td>9RI193</td>
<td>Prehistoric lithic and ceramic scatter</td>
<td>Not Eligible</td>
<td>GNAHRGIS</td>
</tr>
<tr>
<td>9RI194</td>
<td>Prehistoric lithic scatter; Late 19th/20th century house site</td>
<td>Not Eligible</td>
<td>GNAHRGIS</td>
</tr>
<tr>
<td>9RI195</td>
<td>Prehistoric lithic and ceramic scatter; Late 19th/20th century artifact scatter</td>
<td>Not Eligible</td>
<td>GNAHRGIS</td>
</tr>
<tr>
<td>9RI196</td>
<td>Prehistoric lithic scatter; Late 19th/20th century artifact scatter</td>
<td>Not Eligible</td>
<td>GNAHRGIS</td>
</tr>
<tr>
<td>9RI197</td>
<td>Prehistoric lithic scatter; Historic artifact scatter</td>
<td>Not Eligible</td>
<td>GNAHRGIS</td>
</tr>
<tr>
<td>9RI198</td>
<td>Early Archaic lithic scatter; Late 19th/20th century artifact scatter</td>
<td>Not Eligible</td>
<td>GNAHRGIS</td>
</tr>
<tr>
<td>9RI1137</td>
<td>Prehistoric lithic and ceramic scatter</td>
<td>Additional Work</td>
<td>GNAHRGIS</td>
</tr>
<tr>
<td>9RI1138</td>
<td>Woodland lithic and ceramic scatter</td>
<td>Additional Work</td>
<td>GNAHRGIS</td>
</tr>
<tr>
<td>9RI1139</td>
<td>Prehistoric lithic and ceramic scatter</td>
<td>Additional Work</td>
<td>GNAHRGIS</td>
</tr>
<tr>
<td>9RI1140</td>
<td>Woodland lithic and ceramic scatter; 20th century isolate</td>
<td>Additional Work</td>
<td>GNAHRGIS</td>
</tr>
<tr>
<td>9RI1141</td>
<td>Prehistoric lithic and ceramic scatter</td>
<td>Eligible</td>
<td>GNAHRGIS</td>
</tr>
<tr>
<td>9RI1142</td>
<td>Prehistoric lithic and ceramic scatter</td>
<td>Not Eligible</td>
<td>GNAHRGIS</td>
</tr>
<tr>
<td>9RI1143</td>
<td>Prehistoric lithic scatter</td>
<td>Not Eligible</td>
<td>GNAHRGIS</td>
</tr>
<tr>
<td>9RI1152</td>
<td>Prehistoric isolate; Late 19th/early 20th century house scatter</td>
<td>Not Eligible</td>
<td>GNAHRGIS</td>
</tr>
<tr>
<td>9RI1153</td>
<td>Woodland lithic and ceramic scatter</td>
<td>Not Eligible</td>
<td>GNAHRGIS</td>
</tr>
<tr>
<td>9RI1154</td>
<td>Woodland campsite; Historic artifact scatter</td>
<td>Additional Work</td>
<td>GNAHRGIS</td>
</tr>
<tr>
<td>9RI1155</td>
<td>Early 20th century house scatter</td>
<td>Not Eligible</td>
<td>GNAHRGIS</td>
</tr>
<tr>
<td>9RI1156</td>
<td>Prehistoric lithic scatter</td>
<td>Not Eligible</td>
<td>GNAHRGIS</td>
</tr>
<tr>
<td>9RI1157</td>
<td>Prehistoric lithic scatter</td>
<td>Not Eligible</td>
<td>GNAHRGIS</td>
</tr>
<tr>
<td>9RI1158</td>
<td>Early 20th century house scatter</td>
<td>Not Eligible</td>
<td>GNAHRGIS</td>
</tr>
</tbody>
</table>
Cultural Resources Evaluation

Augusta Corporate Park
Richmond County, Georgia
S&ME Project No. 213570; HPD Project No. HP-141006-003

<table>
<thead>
<tr>
<th>Resource No.</th>
<th>Description</th>
<th>NRHP Eligibility</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>9RI1159</td>
<td>Prehistoric lithic scatter</td>
<td>Not Eligible</td>
<td>GNAHRGIS</td>
</tr>
<tr>
<td>9RI1160</td>
<td>Prehistoric lithic scatter; Mid-19th/20th century artifact scatter</td>
<td>Not Eligible</td>
<td>GNAHRGIS</td>
</tr>
<tr>
<td>9RI1161</td>
<td>Prehistoric lithic scatter; Historic artifact scatter</td>
<td>Not Eligible</td>
<td>GNAHRGIS</td>
</tr>
<tr>
<td>9RI1162</td>
<td>Prehistoric lithic scatter</td>
<td>Not Eligible</td>
<td>GNAHRGIS</td>
</tr>
<tr>
<td>9RI1163</td>
<td>Mid-19th through 20th century house scatter</td>
<td>Not Eligible</td>
<td>GNAHRGIS</td>
</tr>
<tr>
<td>9RI1164</td>
<td>Prehistoric lithic scatter</td>
<td>Not Eligible</td>
<td>GNAHRGIS</td>
</tr>
<tr>
<td>9RI1165</td>
<td>Johnson Cemetery, Mid-19th/early 20th century</td>
<td>Not Assessed</td>
<td>GNAHRGIS</td>
</tr>
<tr>
<td>9RI1166</td>
<td>Cemetery 1, Early to mid-20th century</td>
<td>Not Assessed</td>
<td>GNAHRGIS</td>
</tr>
<tr>
<td>9RI1172</td>
<td>No Information</td>
<td></td>
<td>GNAHRGIS</td>
</tr>
<tr>
<td>9RI1188</td>
<td>Woodland lithic and ceramic scatter</td>
<td>Not Eligible</td>
<td>GNAHRGIS</td>
</tr>
<tr>
<td>55909</td>
<td>House, circa 1915</td>
<td>Not Assessed</td>
<td>GNAHRGIS</td>
</tr>
</tbody>
</table>

Figure 3.1. Previously recorded archaeological sites within a one-mile radius of the project area, screen shot from GNAHRGIS.
Figure 3.2. Previously completed cultural resource surveys within one-mile radius of the project area, screen shot from GNAHRGIS.
In addition to reviewing the files and records on NAHRGIS, historic maps of the area were reviewed. These maps included the Faden map (1780), Lloyd’s map (1864), railroad maps from 1883 and 1899, the 1915 Hudgins map of Georgia, the United States Department of Agriculture soil survey map of Richmond County (1916), Georgia Department of Transportation (GDOT) maps from 1951, 1966, 1973, and 1982, and United States Geological Survey (USGS) topographic maps from 1965, 1971, and 1981. The Faden map shows Augusta and the location of McBean Creek, with a road running parallel to the Savannah River, and Ashley being the only named landowner in the vicinity of the project tract (Figure 3.4). The Lloyd map shows McBean Creek and the community of McBean, as well as the railroad tracks running north-south from Augusta and a road that corresponds to Highway 56 (Figure 3.5). The railroad map from 1882 and the map from 1899 both show the location of McBean Creek and the McBean depot, but have little other detail (Figures 3.6 and 3.7). The 1915 Hudgins map is similar to the earlier railroad maps, although it does indicate that there were additional small communities in the area (Figure 3.8). The USDA soil survey map shows the development of a network of roads and a number of residential units in the vicinity of the project area (Figure 3.9). The transportation maps, which span from 1951 to 1982, and the USGS topographic maps, which span from 1965 to 1981, indicate the development of the area and the changes to the road system around the project tract (Figures 3.10–3.16).
Figure 3.4. Faden’s Map (1780) showing Augusta and vicinity.

Figure 3.5. Lloyd map (1864), showing approximate project area.
Figure 3.6 Railroad and county map of Georgia (1883), showing Augusta vicinity and approximate project area.

Figure 3.7. Railway map (1899), showing Augusta vicinity and approximate project area.
Figure 3.8. Hudgins map (1915), showing Augusta vicinity and approximate project area.

Figure 3.9. USDA soil survey map (1916), showing approximate project area.
Figure 3.10. Georgia Department of Transportation map (1951), showing approximate project area.

Figure 3.11. Georgia Department of Transportation map (1966), showing approximate project area.
Figure 3.12. Georgia Department of Transportation map (1973), showing approximate project area.

Figure 3.13. Georgia Department of Transportation map (1982), showing approximate project area.
Figure 3.14. USGS topographic map (1965), showing approximate project area.
Figure 3.15. USGS topographic map (1971), showing approximate project area.
Figure 3.16. USGS topographic map (1981), showing approximate project area.
4.0 Methods

4.1 Research Method

During Phase II testing, the placement of excavation units is based on data gathered during the Phase I survey. Excavation units will be placed so that the optimum amount of information is gathered without destroying the integrity of the site. The purpose of Phase II testing is to collect sufficient archaeological data and define the spatial boundaries of an archaeological site in order to evaluate the National Register eligibility of the site. Excavated areas during the current survey were placed in the vicinity of high concentrations of positive shovel tests, artifacts recovered from intact soil stratigraphy, and diagnostic artifacts based on the 2016 Phase I survey report (Nagle and Carpini 2016).

4.2 Archaeological Field Methods

From June through August 2021, Senior Archaeologist Kimberly Nagle, MA, RPA, Field Directors Frank Carvino, MA, and Senior Crew Chief Paul Connell, BA, and three temporary Field Technicians Dustin conducted Phase II evaluative testing at sites 9RI192, 9RI1137/1139, 9RI1138, and 9RI1154 at the Augusta Corporate Park. During the Phase II evaluative testing one 2-x-2-m test unit was excavated at site 9RI192; three 1-x-2-m test units were excavated at site 9RI1137/1139; four 1-x-2-m test units were excavated at site 9RI1138; and four 1-x-2-m test units were excavated at site 9RI1154. Excavated areas were placed in the vicinity of high concentrations of positive shovel tests and where diagnostic artifacts were recovered from intact soil stratigraphy based on the 2016 Phase I report (Nagle and Carpini 2016). The goal of the Phase II testing was to determine if intact cultural features were present and, if so, to ascertain their age and function. UTM coordinates were obtained from a corner of each test unit using a Trimble GPS unit (capable of sub-meter accuracy). The same corner of each unit also served as the unit elevation datum, which was placed 10 cm above the ground surface.

Excavation of test units proceeded in 10-cm levels within natural or cultural strata, with the exception of the plowzone which was removed as a single level. Excavations continued until subsoil or two culturally sterile levels were encountered, whichever came first. Soil from each test unit was screened through \(\frac{1}{4}\)-inch hardware cloth. Features, if encountered, were bisected, screened through \(1/8\)-inch hardware cloth, photographed, and recorded in detail. Artifacts were placed in bags labeled with the site number, excavator’s name, provenience, and date. A unit level form was filled out for each level excavated, and a unit summary form was completed for each test unit. These forms contained information regarding the excavation strategy, soil texture and Munsell color, and the number and types of artifacts and features encountered. Once excavation of the test unit was complete, a profile of one wall was drawn and photographed and the unit was backfilled.

4.3 Laboratory Methods

Artifacts recovered during the survey were cleaned, identified, and analyzed using the techniques summarized below. Following analysis, artifacts were bagged according to site, provenience, and specimen number. Acid-free plastic bags and artifact tags were used for curation purposes. Provenience and descriptive information for the artifacts recovered during this investigation was entered into an Excel spreadsheet and is presented in Appendix B.

Historic artifacts are separated by material type and then further sorted into functional groups. For example, glass was sorted into window, container, or other glass. Maker’s marks and/or decorations were noted to ascertain
chronological attributes using established references for historic materials, including Noel Hume (1970) and Miller (1991).

The artifacts, field notes, maps, photographs, and other technical materials generated as a result of this project will be temporarily curated at the S&ME office in Columbia. Upon conclusion of the project, project materials will be delivered to the Archaeological Repository at Moundville, Alabama.

4.4 Geophysical Field Methods

Reed Tech completed a ground penetrating radar (GPR) evaluation over the cemetery location and outside the known cemetery boundaries. A Mala HDR radar unit utilizing a 450 MHz antenna was used. As the graves are located less than six feet below the ground surface this unit would provide the blend of resolution and depth of penetration needed to detect unmarked graves. The graves were oriented east-west, so the GPR transects were predominately traversed in a north-south orientation. The GPR spacing was one foot or less over much of the site for high resolution coverage and detection. Electromagnetic (EM) investigation was also completed using a GSSI EMP-400 multifrequency electromagnetic profiler. The EM data was collected on a hand-held Trimble Recon data logger. The EM method is useful at evaluating the shallow subsurface for both metallic and non-metallic conductive materials such as variations in soil conductively which may be related to the presence/absence of graves.

4.5 Architectural Field Methods

An intensive historic architecture survey was conducted to evaluate the National Register eligibility of one previously recorded resource within the project’s APE. The location of the previous recorded was revisited and the primary structure was photographed from multiple angles. Associated outbuildings and historic landscape features were also photographed. Notes were taken on the condition and integrity of each structure and feature. S&ME also attempted to contact the owner of the previously recorded resource to gather additional information on the property. Historic research was carried out using county tax records, county register of deeds information, historic maps and aerial photographs, census information, and other relevant primary and secondary sources. The compiled information from fieldwork and research was used to inform the recommendation on NRHP eligibility.

4.6 National Register Eligibility Assessment

For a property to be considered eligible for the NRHP it must retain integrity of location, design, setting, materials, workmanship, feeling, and association (National Register Bulletin 15:2). In addition, properties must meet one or more of the criteria below:

- are associated with events that have made a significant contribution to the broad patterns of our history;
- or
- are associated with the lives of persons significant in our past;
- or
- embody the distinctive characteristics of a type, period, or method of construction, or that represent the work of a master, or possess high artistic values, or that represent a significant and distinguishable entity whose components may lack individual distinction;
- or
- have yielded or may be likely to yield information important in history or prehistory.
The most frequently used criterion for assessing the significance of an archaeological site is Criterion D, although other criteria were considered where appropriate. For an archaeological site to be considered significant, it must have potential to add to the understanding of the area’s history or prehistory. A commonly used standard to determine a site’s research potential is based on a number of physical characteristics including variety, quantity, integrity, clarity, and environmental context (Glassow 1977). These factors were considered in assessing a site’s potential for inclusion in the NRHP.
5.0 Results

Intermittently from June through August 2021, S&ME conducted Phase II evaluative testing at sites 9RI192, 9RI1137/1139, 9RI1138, and 9RI1154; revisited sites 9RI1140 and 9RI1166 (Cemetery 1); conducted geophysical investigations and limited ground truthing at site 9RI1165 (Johnson Cemetery); and completed an intensive architectural survey on ACP-1. Each of the sites are discussed in detail below and a brief update on the conditions of sites 9RI1140 and 9RI1166 are provided.

During the Phase II evaluative testing one 2-x-2-m test unit was excavated at site 9RI192; three 1-x-2-m test units were excavated at site 9RI1137/1139; four 1-x-2-m test units were excavated at site 9RI1138; and four 1-x-2-m test units were excavated at site 9RI1154. Excavated areas were placed in the vicinity of high concentrations of positive shovel tests and where diagnostic artifacts were recovered from intact soil stratigraphy based on the 2016 Phase I report (Nagle and Carpini 2016).

The revisit to sites 9RI1140 and 9RI1166 (Cemetery 1) showed that timbering had occurred around site 9RI1166, up to the site boundaries, but the site itself remains in place, undisturbed, and tree covered (Figures 5.1 and 5.2). Site 9RI1140 has been timbered and used as a debarking area (Figures 5.3 and 5.4); artifacts remain on the surface of the site and disturbance in the area does not appear to have extended into the intact soil stratigraphy.

5.1 Site 9RI192

Site Number:	9RI192
NRHP Recommendation:	Not Eligible
Site Type:	Lithic scatter
Elevation:	275 ft. AMSL
Components:	Transitional Late Archaic/Early Woodland
Landform:	Slope adjacent to dry creek bed
UTM Coordinates:	E411072, N3682003 (NAD 27)
Soil Type:	Troup find sand
Site Dimensions:	40 N/S x 35 E/W m
Vegetation:	Scrub brush
Artifact Depth:	10–50 cmbd
No. of TUs:	1 – 2x2-m

Site 9RI192 is a Transitional Late Archaic/Early Woodland lithic scatter, located on a slope adjacent to a dry creek in a transmission line corridor (Figures 1.4 and 1.5). The site measures approximately 40 m north/south by 35 m east/west and is located on an eroded hillslope, in a transmission line corridor, in an area of scrub brush (Figure 5.5). Site 9RI192 was initially recorded in 1984 during a survey of the Goshen to Vogtle transmission line corridor; chert debitage was found scattered around the surface of the site, but no temporally diagnostic artifacts were found (Garrow and Bauer 1984). The site was re-located in 2010 during a reconnaissance survey of the property; artifacts, including the base of a Savannah River point, were recovered from the surface of the site, but no artifacts were identified in shovel tests (Nagle and Carpini 2014). During the 2016 Phase I intensive survey, the site was re-located and chert debitage was recovered from the surface of the site (Nagle and Carpini 2016). The Savannah River point, recovered during the reconnaissance, likely dates the site to the transitional Late Archaic/Early Woodland (ca. 4500–3000 B.P.). Due to a lack of intact stratigraphy and no discernable chert outcrop, the site was recommended not eligible for inclusion in the NRHP during the three separate investigations. In the HPD response to the 2016 Phase I investigations, HPD disagreed with these recommendations and requested Phase II testing at site 9RI192 (Appendix A).
Figure 5.1. Vegetation at site 9RI1166 (Cemetery 1), facing northwest.

Figure 5.2. Vegetation at site 9RI1166 (Cemetery 1), facing northwest.
Figure 5.3. Current vegetation at site 9RI1140, facing southeast.

Figure 5.4. Current vegetation at site 9RI1140, facing west.
5.1.1 Phase II Testing

Phase II testing at site 9RI192 included the excavation of one 2-x-2-m test unit. There were no positive shovel tests previously excavated at this site, so test unit placement was in the center of the site, based on the 2016 site map (Figure 5.6). The test unit is described below.

Test Unit 1 (TU 1) was placed in the central portion of the site, at UTM coordinates E411065, N3681996 (NAD27), where artifacts were recovered from the surface of the site. The plowzone and two 10-cm levels were excavated to a depth of approximately 43 centimeters below datum (cmdb) before the subsoil was encountered over the entire test unit. Soils consisted of approximately 10 cm (10–25 cmdb) of dark grayish brown (10YR 4/2) sandy loam (Ap horizon), followed by eight cm (25–33 cmdb) of mottled brown (10YR 4/3) sandy loam with strong brown (7.5YR 5/8) sandy clay, ending with eight + cm (33–41+ cmdb) of strong brown (7.5YR 5/8) sandy clay subsoil (Figures 5.7 and 5.8). Excavation of the test unit was terminated when subsoil was encountered throughout the test unit.

A total of six pieces of Coastal Plain chert debitage were recovered from TU 1 between 10 and 50 cmdb.
Figure 5.6. Site map of 9RI192.
Figure 5.7. Site 9RI192, Test Unit 1, east wall profile drawing.

Figure 5.8. Site 9RI192, Test Unit 1, east wall profile.
5.1.2 Results of Analysis

A total of six pieces of lithic debitage were recovered from the site during the Phase II testing. The paucity of artifacts and lack in variety of artifacts make it difficult to complete an analysis of the site. Given this information, the artifacts recovered during the reconnaissance survey and Phase I investigations will be used to complete the analysis. In total 17 prehistoric artifacts were recovered during these three investigations and include one chert Savannah River projectile point fragment, one chert core, and 15 pieces of debitage (nine chert and six Coastal Plain chert) (Table 5.1).

Table 5.1. Site 9RI192 Artifact Summary Table.

<table>
<thead>
<tr>
<th>Survey</th>
<th>Location</th>
<th>Formal Tools</th>
<th>Cores</th>
<th>Debitage</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reconnaissance</td>
<td>Surface</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Phase I</td>
<td>Surface</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Phase II</td>
<td>TU 1, Level 1</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Phase II</td>
<td>TU 1, Level 2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Phase II</td>
<td>TU 1, Level 3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>1</td>
<td>1</td>
<td>15</td>
<td>17</td>
</tr>
</tbody>
</table>

Approximately 88 percent (n=15) of the artifacts consisted of lithic debitage, while formal tools and cores were each six percent (n=1) (Figure 5.9). The number of different formal tool types was low, represented by the projectile point fragment in this assemblage. In addition, the ratio of debitage to tools (both formal and expedient) was low at 15:1, indicating a short term camp site where tool refining was likely to be occurring more frequently than tool manufacture.

Figure 5.9. Site 9RI192 artifact types.
Regarding the selection of lithic raw materials used at site 9RI192, chert (n=11, 65%) was the most common material type in the debitage assemblage, followed by Coastal Plain chert (n=6, 35%) (Figure 5.10). The core and Savannah River point fragment were manufactured out of chert. Coastal Plain chert comes from two primary locations in Georgia, southwestern Georgia, west of the Flint River, and southeastern Georgia, along the Savannah River, south of Augusta (Goad 1979). Chert that is not Coastal Plain chert has also been found in the Coastal Plain and Piedmont physiographic regions along major river drainages.

Mass analysis was used for size grading the lithic debitage found at site 9RI192 (Ahler 1989). Size Grade 1 represents debitage that is greater than 1 inch; Size Grade 2 is debitage that is between ½ and 1 inch; Size Grade 3 is between ¼ and ½ inch; and Size Grade 4 is debitage smaller than ¼ inch. As shown in Figure 5.11, 67 percent (n=10) of the debitage was less than ½ inch in size (Size Grades 3 and 4), while 33 percent (n=5) was greater than ½ inch. These numbers indicate that the site was used primarily for tool maintenance (e.g., resharpening) and modification; however, primary reduction activities were occurring as well, just with less frequency at the site.

Figure 5.10. Lithic raw materials at site 9RI192.
5.1.3 Summary

Site 9RI192 is a transitional Late Archaic/Early Woodland (ca. 4500–3000 B.P.) lithic scatter located on an eroded hillslope in a transmission line corridor. Approximately 94 percent (n=16) of the prehistoric artifacts recovered during the reconnaissance survey, Phase I investigations, and Phase II testing were recovered from the surface, the plowzone, or just beneath the plowzone; the formal tool and core were collected from the surface of the site. No features or concentrations of artifacts were identified during test unit excavation; there is no evidence of a chert outcrop in or around the area, and the single diagnostic artifact that was recovered from the site during the reconnaissance survey was recovered from the surface.

Site 9RI192 is not associated with events that have made a significant contribution to the broad patterns of history (Criterion A); is not associated with the lives of significant persons in the past (Criterion B); does not embody the distinctive characteristics of a type, period, or methods of construction, represent the work of a master, possess high artistic values, or represent a significant and distinguishable entity whose components may lack individual distinction (Criterion C); and the minimal artifact diversity, the lack of features or concentrations of artifacts identified at the site, the lack of diagnostic artifacts, and the paucity of artifacts from intact deposits suggests that it is unlikely that site 9RI192 will contribute new or significant information to the prehistory of the area (Criterion D). Based on the reasoning stated above, site 9RI192 is recommended not eligible for inclusion in the NRHP.
5.2 Site 9RI1137/1139

<table>
<thead>
<tr>
<th>Site Number: 9RI1137/1139</th>
<th>NRHP Recommendation: Not Eligible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Type: Prehistoric campsite; Historic artifact scatter</td>
<td>Elevation: 180 ft. AMSL</td>
</tr>
<tr>
<td>Components: Unidentified; 19th/20th century</td>
<td>Landform: Hilltop</td>
</tr>
<tr>
<td>UTM Coordinates: E414421, N3680713 (NAD 27)</td>
<td>Soil Type: Troup fine sand</td>
</tr>
<tr>
<td>Site Dimensions: 270 E/W x 150 N/S m</td>
<td>Vegetation: Scrub Brush</td>
</tr>
<tr>
<td>Artifact Depth: Surface; 10–50 cmbd</td>
<td>No. of TUs: 3 – 1x2-m</td>
</tr>
</tbody>
</table>

Site 9RI1137/1139 is a prehistoric campsite and nineteenth/twentieth century artifact scatter located on a hilltop overlooking McBean Creek and one of its tributaries (Figures 1.4 and 1.5). The site measures approximately 270 m east/west by 150 m north/south and is in an area that has been timbered and is covered in scrub (Figure 5.12). Initially recorded in 2010, sites 9RI1137 and 9RI1139 were individual sites located on the same landform (Nagle and Carpini 2014). Both sites were recorded as low density lithic scatters with no diagnostic artifacts recovered and were determined to be ineligible for inclusion in the NRHP. During the 2016 Phase I intensive survey, both sites were re-located and were joined into one large campsite (Nagle and Carpini 2016). Although no diagnostic artifacts were identified during the Phase I investigations, the intact deposits suggested the site could yield significant information on the prehistory of the area and was recommended for additional work. HPD agreed with these recommendations in their response letter (Appendix A).

Figure 5.12. Overview of site 9RI1137/1139, facing north.
5.2.1 Phase II Testing

Phase II testing at site 9RI1137/1139 included the excavation of three 1-x-2-m test units placed within the site. Excavated areas were placed in the vicinity of concentrations of positive shovel tests based on the 2016 site map (Figure 5.13). Each of these test units is described below.

A total of 35 artifacts were recovered from the general surface of site 9RI1137/1139: 30 prehistoric and five historic. The prehistoric artifacts included one piece of fine sand tempered cordmarked pottery, one Coastal Plain chert utilized flake, one Coastal Plain chert amorphous core, and 27 pieces of Coastal Plain chert debitage; the historic artifacts included two pieces of plain whiteware, one piece of amethyst/solarized glass, and one piece of aqua glass.

Test Unit 1 (TU 1) was placed in the central portion of the site, at UTM coordinates E414438, N3680696 (NAD27), where a concentration of positive shovel tests with artifacts recovered from intact stratigraphy were located during the 2016 investigations. The plowzone and four 10-cm levels were excavated to a depth of approximately 70 centimeters below datum (cmbd). Soils consisted of approximately 22 cm (10–32 cmbd) of grayish brown (10YR 5/2) sand (Ap horizon), followed by 40+ cm (32–72+ cmbd) of light olive brown (2.5Y 5/4) sand (Figures 5.14 and 5.15). Excavation of the test unit was terminated after two culturally sterile levels were excavated.

A total of six pieces of Coastal Plain chert debitage were found between 10 and 50 cmbd in TU 1 (Table 5.2, Appendix B).

Test Unit 2 (TU 2) was placed in the northwestern portion of the site, at UTM coordinates E414375, N3680726 (NAD27), where a concentration of positive shovel tests with artifacts recovered from intact stratigraphy were located during the 2016 investigations. The plowzone and three levels were excavated to a depth of 60 cmbd. Soils consisted of approximately 14 cm (10–24 cmbd) of brown (10YR 4/3) sand (Ap horizon), followed by 36+ cm (24–60+ cmbd) of yellowish brown (10YR 5/4) sand (Figures 5.16 and 5.17). Excavation of the test unit was terminated after two culturally sterile levels were excavated.

A total of six pieces of Coastal Plain chert debitage were found between 30 and 40 cmbd in TU 2 (Table 5.2, Appendix B).

Test Unit 3 (TU 3) was placed in the southern portion of the site, at UTM coordinates E414503, N3680674 (NAD27), where a concentration of positive shovel tests with artifacts recovered from intact stratigraphy were located during the 2016 investigations. The plowzone and three 10-cm level were excavated to a depth of 51 cmbd. Soils consisted of approximately 16 cm (10–26 cmbd) of grayish brown (10YR 5/2) sand (Ap horizon), followed by 24+ cm (26–50+ cmbd) of yellowish brown (10YR 5/4) sand. Excavation of the test unit was terminated after two culturally sterile levels were excavated.

A total of four pieces of Coastal Plain chert debitage were found on the surface and between 10 and 21 cmbd in TU 3 (Table 5.2, Appendix B).
Figure 5.13. Site map of 9RI1137/1139 (test unit size not to scale).
Figure 5.14. Site 9RI1137/1139, Test Unit 1, east wall profile drawing.

Figure 5.15. Site 9RI1137/1138, Test Unit 1, east wall profile.
Figure 5.16. Site 9RI1137/1139, Test Unit 2, west wall profile drawing.

Figure 5.17. Site 9RI1137/1139, Test Unit 2, north wall profile.
Table 5.2. Site 9RI1137/1139 Artifact Summary Table.

<table>
<thead>
<tr>
<th>Test Unit/ Level</th>
<th>Expedient Tools</th>
<th>Cores</th>
<th>Debitage</th>
<th>Prehistoric Pottery</th>
<th>Historic</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Surface</td>
<td>3</td>
<td>1</td>
<td>25</td>
<td>1</td>
<td>5</td>
<td>35</td>
</tr>
<tr>
<td>TU 1, Level 1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>TU 1, Level 2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>TU 1, Level 3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>TU 2, Level 2</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>TU 3, Surface</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>TU 3, Level 1</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Totals</td>
<td>3</td>
<td>1</td>
<td>41</td>
<td>1</td>
<td>5</td>
<td>51</td>
</tr>
</tbody>
</table>

5.2.2 Results of Analysis

In all, 51 artifacts (46 prehistoric and five historic) were recovered from the surface of the site and from three test units. Approximately 80 percent (n=41) of the artifacts consisted of lithic debitage, while the next most common category was historic artifacts (n=5; 10%), followed by expedient tools (n=3; 6%), cores (n=1; 2%), and prehistoric pottery (n=1; 2%) (Figure 5.18).

A total of 45 lithic artifacts were recovered from the site and included three Coastal Plain chert utilized flakes, one Coastal Plain chert core, and 41 pieces of Coastal Plain chert debitage (Figures 5.19 and 5.20). There is a lack of formal tool types at site 9RI1137/1139. In addition, the ratio of debitage to expedient tools was low at 13.7:1, indicating a short-term camp site where tool refining was likely to be occurring more frequently than tool manufacture.

A total of 15 artifacts were found within the test units at depths ranging from 0 to 40 cmbs (10–50 cmbd), with 33 percent of the prehistoric artifacts (n=5) being found in the plowzone (10–30 cmbd/0–20 cmbs), and another 47 percent (n=7) being found directly beneath the plowzone (30–40 cmbd/20–30 cmbs). Only one test unit had artifacts recovered from Level 3; 20 percent (n=3) of the artifacts recovered from site 9RI1137/1138 were found in intact deposits.

Regarding the selection of lithic raw materials used at site 9RI1137/1139, Coastal Plain chert was the only raw material recovered from the site during the Phase II testing. Coastal Plain chert comes from two primary locations in Georgia, southwestern Georgia, west of the Flint River, and southeastern Georgia, along the Savannah River, south of Augusta (Goad 1979).

Mass analysis was used for size grading the lithic debitage found at site 9RI1137/1139 (Ahler 1989). Size Grade 1 represents debitage that is greater than 1 inch; Size Grade 2 is debitage that is between ½ and 1 inch; Size Grade 3 is between ¼ and ½ inch; and Size Grade 4 is debitage smaller than ¼ inch. As shown in Figure 5.21, 29 percent (n=12) of the debitage was less than ½ inch in size (Size Grades 3 and 4), while 71 percent (n=29) was greater than ½ inch. These numbers indicate that the site was used primarily for tool maintenance (e.g., resharpening) and modification; however, primary reduction activities were occurring as well, just with less frequency at the site.
Figure 5.18. Site 9RI1137/1139 artifact types.

Figure 5.19. Coastal Plain chert core from site 9RI1137/1139.
Figure 5.20. Fine sand tempered cordmarker pottery and Coastal Plain chert utilized flake from site 9RI1137/1139.

Figure 5.21. Lithic debitage size grades at site 9RI1137/1139.
One piece of prehistoric pottery was collected from the surface of site 9RI1137/1139. The piece of pottery is non-diagnostic sand tempered pottery with a cordmarker surface treatment (Figure 5.20).

5.2.3 Summary

Site 9RI1137/1139 is a prehistoric campsite and nineteenth/twentieth century artifact scatter located on a hilltop overlooking McBean Creek and one of its tributaries (Figures 1.4 and 1.5). Approximately 93 percent (n=43) of the prehistoric artifacts recovered during the Phase II testing were recovered from the surface, plowzone, or just beneath the plowzone; the expedient tool, as well as the prehistoric ceramic, recovered from the site were recovered from the surface. No features or concentrations of artifacts were identified during test unit excavation.

Site 9RI1137/1139 is not associated with events that have made a significant contribution to the broad patterns of history (Criterion A); is not associated with the lives of significant persons in the past (Criterion B); does not embody the distinctive characteristics of a type, period, or methods of construction, represent the work of a master, possess high artistic values, or represent a significant and distinguishable entity whose components may lack individual distinction (Criterion C); and the majority of the artifacts, including the expedient tools, cores, and prehistoric pottery were recovered from the surface and/or plowzone from the site, the overall minimal artifact diversity, the lack of features or concentrations of artifacts identified at the site, the lack of diagnostic artifacts, and the low artifact count from intact deposits suggests that it is unlikely that site 9RI1137/1139 will contribute new or significant information to the prehistory or history of the area (Criterion D). Based on the reasoning stated above, site 9RI1137/1139 is recommended not eligible for inclusion in the NRHP.

5.3 Site 9RI1138

<table>
<thead>
<tr>
<th>Site Number: 9RI1138</th>
<th>NRHP Recommendation: Eligible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Type: Campsite</td>
<td>Elevation: 130 ft. AMSL</td>
</tr>
<tr>
<td>Components: Early/Late Archaic and Middle to Late Woodland</td>
<td>Landform: Hillslope/1st terrace</td>
</tr>
<tr>
<td>UTM Coordinates: E414822, N3680438 (NAD 27)</td>
<td>Soil Type: Troup fine sand</td>
</tr>
<tr>
<td>Site Dimensions: 90 E/W x 90 N/S m</td>
<td>Vegetation: Scrub Brush</td>
</tr>
<tr>
<td>Artifact Depth: Surface; 10–128 cmbd</td>
<td>No. of TUs: 4 – 1x2-m</td>
</tr>
</tbody>
</table>

Site 9RI1138 is an Early/Late Archaic and Middle to Late Woodland campsite located on a hillslope and first terrace of McBean Creek (Figures 1.4 and 1.5). The site measures approximately 90 m east/west by 90 m north/south and is in an area that has been timbered and is covered in scrub (Figures 5.22 and 5.23). Initially recorded in 2010, site 9RI1138 was recommended as potentially eligible for inclusion in the NRHP based on the presence of prehistoric pottery and lithic artifacts recovered from intact deposits (Nagle and Carpini 2014). The site was revisited during the 2016 Phase I investigations and contained Middle/Late Woodland Yadkin Pottery from intact deposits and additional work was recommended to determine the site’s final NRHP eligibility (Nagle and Carpini 2016). The HPD agreed with the recommendations for additional work (Appendix A).

5.3.1 Phase II Testing

A total of 25 prehistoric artifacts were recovered from the general surface of site 9RI1138. The artifacts included one piece of sand tempered plain pottery, one residual pottery sherd, one Coastal Plain chert utilized flake, and 22 pieces of lithic debitage (21 Coastal Plain chert and one quartzite).
Figure 5.22. Site map of site 9RI1138 (test unit size not to scale).
Phase II testing at site 9RI1138 included the excavation of four 1-x-2-m test units placed within the site. Excavated areas were placed in the vicinity of concentrations of positive shovel tests based on the 2016 site map (Figure 5.22). Each of these test units is described below.

Test Unit 1 (TU 1) was placed in the northern portion of the site, at UTM coordinates E414809, N3680468 (NAD27), where a concentration of positive shovel tests were located during the 2016 Phase I investigations. The plowzone and two 10-cm levels were excavated to a depth of approximately 67 centimeters below datum (cmbd). Soils consisted of approximately 40 cm (10–50 cmbd) of pale brown (10YR 6/3) sand (Ap horizon), followed by 16+ cm (50–66+ cmbd) of strong brown (7.5YR 4/6) sand. Excavation of the test unit was terminated after two culturally sterile level were excavated.

A total of three pieces of Coastal Plain chert debitage were found between 10 and 47 cmbd in TU 1 (Table 5.3, Appendix B).

Test Unit 2 (TU 2) was placed in the central portion of the site, at UTM coordinates E414823, N3566915 (NAD27), where a concentration of positive shovel tests were located during the 2016 Phase I investigations. The plowzone and nine levels were excavated to a depth of 118 cmbd. Soils consisted of approximately 22 cm (10–32 cmbd) of pale brown (10YR 6/3) sand (Ap horizon), followed by 86+ cm (32–118 cmbd) of strong brown (7.5YR 4/6) sand (Figures 5.24 and 5.25). A 50-x-50-cm window was opened at the base of the unit to explore the possible feature and excavate deeper into the test unit. Excavation of the test unit was terminated when Feature 1 was identified at the base of the test unit and another test unit (TU 4) was excavated to reveal the extent of the feature.
Figure 5.24. Site 9RI1138, Test Unit 2, east wall profile drawing.
Figure 5.25. Site 9RI1138, Test Unit 2, east wall profile.
Table 5.3. Site 9RI1138 Artifact Summary Table.

<table>
<thead>
<tr>
<th>Test Unit/ Level</th>
<th>Formal Tools</th>
<th>Expedient Tools</th>
<th>Debitage</th>
<th>Prehistoric Ceramic</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Surface</td>
<td>0</td>
<td>1</td>
<td>22</td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td>TU 1, Level 1</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>TU 2, Surface</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>TU 2, Level 1</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>TU 2, Level 2</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>TU 2, Level 3</td>
<td>0</td>
<td>0</td>
<td>23</td>
<td>0</td>
<td>23</td>
</tr>
<tr>
<td>TU 2, Level 4</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>TU 2, Level 5</td>
<td>1</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>17</td>
</tr>
<tr>
<td>TU 2, Level 6</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>TU 2, Level 7</td>
<td>0</td>
<td>0</td>
<td>11</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>TU 2, Level 8</td>
<td>0</td>
<td>3</td>
<td>7</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>TU 2, Level 9</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>TU 2, 50-x-50-cm, Level 10</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>TU 3, Level 1</td>
<td>1</td>
<td>0</td>
<td>17</td>
<td>0</td>
<td>18</td>
</tr>
<tr>
<td>TU 3, Level 2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>TU 3, Level 3</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>TU 3, Level 4</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>TU 3, Level 5</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>TU 3, Level 7</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>TU 3, Level 8</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>TU 4, Level 1</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>TU 4, Level 2</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>TU 4, Level 3</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>TU 4, Level 4</td>
<td>0</td>
<td>1</td>
<td>13</td>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td>TU 4, Level 5</td>
<td>0</td>
<td>0</td>
<td>29</td>
<td>0</td>
<td>29</td>
</tr>
<tr>
<td>TU 4, Level 6</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>Feature 1</td>
<td>0</td>
<td>2</td>
<td>7</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>Totals</td>
<td>4</td>
<td>10</td>
<td>277</td>
<td>2</td>
<td>293</td>
</tr>
</tbody>
</table>
A total of 120 prehistoric artifacts were recovered from TU 2. The artifacts included one Coastal Plain chert Kirk Corner Notched projectile point, one Coastal Plain chert Savannah River projectile point, one Coastal Plain chert retouched flake, three Coastal Plain chert utilized flakes, and 114 pieces of lithic debitage (108 Coastal Plain chert, four quartz, one quartzite, and one fossiliferous chert) (Table 5.3, Appendix B). The artifacts were found between 10 and 118 cmbd.

Test Unit 3 (TU 3) was placed in the southeastern portion of the site, at UTM coordinates E414844, N3680414 (NAD27). This was in an area where a concentration of positive shovel tests were located during the 2016 Phase I investigations. The plowzone and nine 10-cm level were excavated to a depth of 132 cmbd. Soils consisted of approximately 40 cm (10–50 cmbd) of grayish brown (10YR 5/2) sand (Ap horizon), followed by 82+ cm (50–132+ cmbd) of strong brown (7.5YR 5/6) sand. A 50-x-50-cm window was opened at the base of the unit to determine if intact deposits continued deeper below the approximate one meter mark. Excavation of the test unit was terminated after two culturally sterile levels were excavated.

A total of 51 prehistoric artifacts were recovered from TU 3. The artifacts included one Coastal Plain chert Savannah River projectile point, one Coastal Plain chert scraper, two Coastal Plain chert utilized flakes, and 47 pieces of lithic debitage (43 Coastal Plain chert, two quartz, one chert, and one quartzite) (Table 5.3, Appendix B). The artifacts were found between 10 and 112 cmbd.

Test Unit 4 (TU 4) was placed adjoining the west wall to TU 2 to determine the nature and extent of Feature 1, at UTM coordinates E414823, N3680443 (NAD27). The plowzone and five 10-cm levels were excavated to a depth of 90 cmbd. Soils consisted of approximately 22 cm (10–32 cmbd) of gray (10YR 5/1) sandy loam (Ap horizon), followed by 58+ cm (32–90 cmbd) of strong brown (7.5YR 4/6) sand. Excavation of the test unit was terminated once Feature 1 was encountered.

A total of 85 prehistoric artifacts were recovered from TU 4. The artifacts included one Coastal Plain chert utilized flake and 84 pieces of lithic debitage (82 Coastal Plain and two quartz) (Table 5.3, Appendix B). The artifacts were found between 10 and 90 cmbd.

Feature 1 is a basin-shaped pit measuring 81-x-97 cm in size by 54 cm deep (64–118 cmbd) that was first identified in the wall of TU 1 extending to the north and west; TU 4, a 1-x-2-m test unit, was excavated adjoining the west wall of TU 1 to determine the nature and extent of Feature 1 (Figures 5.26 and 5.27). The feature initially contained mottled soils with a dark gray (10YR 4/1) sand and strong brown (7.5YR 4/6) sand; this transitioned to the mottled very dark gray (10YR 3/1) sand and black (10YR 2/1) sand that can be seen in the profile pictures of TU 2 (Figures 5.24 and 5.25). The south half of the feature was screened through 1/8 in mesh; the north half of the feature was screened through ¼ in mesh.

A total of nine prehistoric artifacts were recovered from Feature 1. The artifacts included one Coastal Plain chert retouched flake, one Coastal Plain chert utilized flake, and seven pieces of lithic debitage (five Coastal Plain and two quartz) (Table 5.3, Appendix B). The artifacts were found between 64 and 118 cmbd. Some charcoal was noted within the feature. Based on the size, the few artifacts recovered, and the presence of charcoal, the feature is interpreted to be a fire pit.
Figure 5.26. Site 9RI1138, Test Unit 4, Feature 1 plan view.
Figure 5.27. Site 9RI1138, Test Unit 4, Feature 1, plan view.
5.3.2 Results of Analysis

In all, 293 prehistoric artifacts were recovered from four test units. Approximately 95 percent (n=277) of the artifacts consisted of lithic debitage, while the next most common category was expedient tools (n=10; 3%), followed by formal tools (n=4; 1%), and prehistoric ceramic (n=2; 1%) (Figure 5.28).

A total of 291 lithic artifacts included three Coastal Plain chert projectile points, one Coastal Plain chert scraper, two Coastal Plain chert retouched flakes, eight Coastal Plain chert utilized flakes, and 277 pieces of debitage (262 Coastal Plain chert, 10 quartz, three quartzite, one chert, and one fossiliferous chert) (Figures 5.29 through 5.31). The number of different formal tool types was low, represented by only bifaces in this assemblage. In addition, the ratio of debitage to tools (both formal and expedient) was low at 19.8:1, indicating a short term camp site where tool refining was likely to be occurring more frequently than tool manufacture.

Artifact density in test units ranged from three artifacts in TU 1 to 120 artifacts in TU 2, with a mean of 64.75 artifacts per test unit. The southern and central portions of the site contained the densest concentration of artifacts in TU 2 (n=120), TU 4 (n=85), and TU 3 (n=51). The northern portion of the site contained minimal artifacts (TU1, n=3), with no artifacts recovered from intact stratigraphy.

Artifacts were found at depths ranging from the surface to between 0 and 118 cmbs (10–128 cmbd) in the test units, with 29 percent of the prehistoric artifacts (n=85) being found on the surface or in the plowzone (10–36 cmbd/0–26 cmbs), and another eight percent (n=23) being found directly beneath the plowzone (36–46 cmbd/26–36 cmbs). The majority of the artifacts (n=185; 63%) were found in intact deposits at site 9RI1138 (Figure 5.32).

Regarding the selection of lithic raw materials used at site 9RI1138, Coastal Plain chert (n=262, 95%) was the most common material type in the debitage assemblage, followed by quartz (n=10, 4%), and then quartzite (n=3) and chert/fossiliferous chert (n=2) comprised the final one percent (Figure 5.33). The 14 formal and expedient tools were manufactured solely out of Coastal Plain chert. Coastal Plain chert comes from two primary locations in Georgia, southwestern Georgia, west of the Flint River, and southeastern Georgia, along the Savannah River, south of Augusta (Goad 1979). Chert that is not Coastal Plain chert has also been found in the Coastal Plain and Piedmont physiographic regions along major river drainages.

Quartz outcrops have been noted in Burke, DeKalb, Hancock, and Monroe counties in Georgia. Burke County is directly south of the project area and site 9RI1138. The other source locations are to the northwest of Augusta and in the central portion of Georgia to the south and east of Atlanta.
Figure 5.28. Site 9RI1138 artifact types.

Figure 5.29. Projectile points from 9RI1138, from left to right, Kirk Corner Notched, Savannah River, and Small Savannah River, each manufactured from Coastal Plain chert.
Figure 5.30. Lithic tools from 9RI1138, from left to right, scraper, retouched flake, and two utilized flakes.

Figure 5.31. Lithic artifacts from Feature 1, 9RI1138, from left to right, retouched flake and utilized flake.
Figure 5.32. Number of artifacts per level at site 9RI1138.

Figure 5.33. Lithic raw materials at site 9RI1138.
Mass analysis was used for size grading the lithic debitage found at site 9RI1138 (Ahler 1989). Size Grade 1 represents debitage that is greater than 1 inch; Size Grade 2 is debitage that is between ½ and 1 inch; Size Grade 3 is between ¼ and ½ inch; and Size Grade 4 is debitage smaller than ¼ inch. As shown in Figure 5.34, 82 percent (n=228) of the debitage was less than ½ inch in size (Size Grades 3 and 4), while 18 percent (n=49) was greater than ½ inch. These numbers indicate that the site was used primarily for tool maintenance (e.g., resharpening) and modification; however, primary reduction activities were occurring as well, just with less frequency at the site.

Two pieces of prehistoric pottery were collected from the surface of site 9RI1138. One piece was sufficiently large enough to characterize temper and surface treatment, while the remaining sherd was too small to be classified (i.e., residual sherds). The one piece of pottery is non-diagnostic sand tempered pottery with no evidence of a surface treatment.

![Lithic Debitage Size Grades at site 9RI1138](image)

Figure 5.34. Lithic debitage size grades at site 9RI1138.

5.3.3 Summary

Site 9RI1138 is an Early/Late Archaic and Middle to Late Woodland campsite located on a hillslope and first terrace of McBean Creek. Over half of the artifacts recovered from site 9RI1138, (n=185; 63%), were found in intact deposits. The site contains chipped stone tools, both formal and expedient, within relatively intact stratigraphic deposits, and has a relatively large amount and moderate diversity of artifacts. Feature 1, an Archaic fire pit/hearth, is also located in intact deposits. Based on these factors, site 9RI1138 is recommended eligible for inclusion in the NRHP under Criterion D, for its potential to yield important information to the prehistory of the area. Not enough information was gathered during the Phase II investigations to determine if the site provides
information on broad patterns of settlement in the region (Criterion A); the site is not associated with the lives of significant persons in the past (Criterion B) and does not embody the distinctive characteristics of a type, period, or methods of construction; represent the work of a master; possess high artistic values; or represent a significant and distinguishable entity whose components may lack individual distinction (Criterion C), site 9RI1138 is not eligible under Criteria B and C.

5.4 Site 9RI1154

<table>
<thead>
<tr>
<th>Site Number:</th>
<th>9RI1154</th>
<th>NRHP Recommendation:</th>
<th>Not Eligible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Type:</td>
<td>Prehistoric campsite; Historic scatter</td>
<td>Elevation:</td>
<td>270 ft. AMSL</td>
</tr>
<tr>
<td>Components:</td>
<td>Middle/Late Woodland and Mississippian; Unidentified</td>
<td>Landform:</td>
<td>Ridge</td>
</tr>
<tr>
<td>UTM Coordinates:</td>
<td>E413335, N3682757 (NAD 27)</td>
<td>Soil Type:</td>
<td>Troup fine sand</td>
</tr>
<tr>
<td>Site Dimensions:</td>
<td>150 N/S x 60 E/W m</td>
<td>Vegetation:</td>
<td>Secondary growth</td>
</tr>
<tr>
<td>Artifact Depth:</td>
<td>Surface; 10–99 cmbd</td>
<td>No. of TUs:</td>
<td>4 – 1-x-2-m</td>
</tr>
</tbody>
</table>

Site 9RI1154 is a Middle to Late Woodland and Mississippian campsite and historic artifact scatter located on a sandy ridge overlooking a tributary of McBean Creek (Figures 1.4 and 1.5). The site measures approximately 150 m north/south by 60 m east/west and is in an area that has been timbered and is covered in scrub (Figure 5.35). Initially recorded during the 2016 Phase I investigations, the site contained Middle/Late Woodland Deptford and Yadkin Pottery from intact deposits and additional work was recommended to determine the site’s final NRHP eligibility (Nagle and Carpini 2016). The HPD agreed with the recommendations for additional work (Appendix A).

5.4.1 Phase II Testing

Phase II testing at site 9RI1154 included the excavation of four 1-x-2-m test units. Excavated areas were placed in the vicinity of concentrations of positive shovel tests based on the 2016 site map. Each of these test units is described below.

A total of 17 artifacts (13 historic and four prehistoric) were recovered from the general surface of site 9RI1154. The prehistoric artifacts included two pieces of sand tempered pottery (one complicated stamped and one plain), one residual pottery sherd, and one piece of Coastal Plain chert debitage; the historic artifacts consisted of three pieces of whiteware (two plain and one flow blue), nine pieces of glass (five amber and four clear), and one piece of brick (Appendix B).

Test Unit 1 (TU 1) was placed in the north central portion of the site, at UTM coordinates E413345, N3682745 (NAD27), where positive shovel tests were located during the 2016 survey. The plowzone and two 10-cm levels were excavated to a depth of approximately 49 cmbd. Soils consisted of approximately 14 cm (10–24 cmbd) of brown (10YR 4/3) silty sand (Ap horizon), followed by 25+ cm (24–49+ cmbd) of strong brown (7.5YR 5/8) sand (Figures 5.36 and 5.37). Excavation of the test unit was terminated after two culturally sterile levels were excavated.

A total of 12 artifacts were recovered from TU 1; seven prehistoric and five historic. The prehistoric artifacts included five pieces of prehistoric pottery: five non-diagnostic sand tempered plain and indeterminate decoration, one crushed quartz tempered plain Yadkin pottery, and one residual sherd; the historic artifacts included four pieces of glass (two clear and two amber) and one metal clothing eyelet (Table 5.4, Appendix B). The prehistoric artifacts were found on the surface and between 10 and 22 cmbd and the historic artifacts were found between 10 and 22 cmbd.
Figure 5.35. Site map of site 9RI1154 (test unit size not to scale).
Figure 5.36. Site 9RI1154, Test Unit 1, north wall profile drawing.

Figure 5.37. Site 9RI1154, Test Unit 1, north wall profile.
Table 5.4. Site 9RI1154 Artifact Summary Table.

<table>
<thead>
<tr>
<th>Test Unit/ Level</th>
<th>Expedient Tools</th>
<th>Debitage</th>
<th>Prehistoric Ceramic</th>
<th>Historic Artifacts</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Surface</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td>TU 1, Surface</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>TU 1, Level 1</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>TU 2, Level 1</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>58</td>
<td>62</td>
</tr>
<tr>
<td>TU 2, Level 2</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>TU 2, Level 3</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>TU 2, Level 4</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>TU 2, Level 5</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>TU 2, Level 6</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>TU 2, Level 7</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>TU 2, Level 8</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>TU 2, Level 9</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>TU 3, Surface</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>TU 3, Level 1</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>TU 3, Level 2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>TU 3, Level 3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>TU 3, Level 4</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>TU 3, Level 5</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>Totals</td>
<td>2</td>
<td>42</td>
<td>16</td>
<td>79</td>
<td>139</td>
</tr>
</tbody>
</table>

Test Unit 2 (TU 2) was placed in the northwestern portion of the site, at UTM coordinates E413309, N3682745 (NAD27), where the majority of artifacts were recovered during the 2016 investigations. The plowzone and 10 levels were excavated to a depth of 119 cmbd. Soils consisted of approximately 28 cm (10–38 cmbd) of brown (10YR 4/3) silty sand (Ap horizon), followed by 81+ cm (38–119+ cmbd) of yellowish brown (10YR 5/6) sand (Figures 5.38 and 5.39). A 50-x-50-cm window was opened at the base of the unit to determine if intact deposits continued deeper below the approximate one meter mark. Excavation of the test unit was terminated after two culturally sterile levels were excavated.

A total of 93 artifacts (33 prehistoric and 60 historic) were recovered from TU 2. The prehistoric artifacts included six pieces of prehistoric pottery (one non-diagnostic plain sand tempered, two crushed quartz tempered plain and indeterminate Yakdin pottery, and three residual sherds), one quartzite hammerstone, one Coastal Plain chert utilized flake, and 25 pieces of lithic debitage (24 Coastal Plain chert and one quartz); historic artifacts consisted of three pieces of whiteware (two plain and one green decorated), 52 pieces of glass (29 clear, 19 amber, three window, and one aqua), and five pieces of unidentified metal (Table 5.4, Appendix B). The historic artifacts were found between 10 and 29 cmbd; the prehistoric artifacts were found between 10 and 99 cmbd.
Figure 5.38. Site 9RI1154, Test Unit 2, north wall profile drawing.
Figure 5.39. Site 9RI1154, Test Unit 2, north wall profile.
Cultural Resources Evaluation
Augusta Corporate Park
Richmond County, Georgia
S&ME Project No. 213570; HPD Project No. HP-141006-003

Test Unit 3 (TU 3) was placed in the central portion of the site, at UTM coordinates E413363, N3682699 (NAD27), where positive shovel tests were located during the 2016 survey. The plowzone and seven 10-cm level were excavated to a depth of 91 cmbd. Soils consisted of approximately 21 cm (10–31 cmbd) of brown (10YR 4/3) silty sand (Ap horizon), followed by 60+ cm (31–91+ cmbd) of yellowish brown (10YR 5/6) sand. Excavation of the test unit was terminated after two culturally sterile levels were excavated.

A total of 21 artifacts were recovered from TU 3; 18 prehistoric and three historic. The prehistoric artifacts included two pieces of crushed quartz Yadkin pottery (one smoothed and one simple stamped) and 16 pieces of lithic debitage (eight Coastal Plain chert and eight quartz); historic artifacts consisted of three pieces of clear glass (Table 5.4, Appendix B). The historic artifacts were found on the surface and between 21 and 31 cmbd; the prehistoric artifacts were found between 10 and 61 cmbd.

Test Unit 4 (TU 4) was placed in the southern portion of the site, at UTM coordinates E413406, N3682654 (NAD27), where artifacts were recovered during the 2016 investigation. The plowzone and one 8-cm level was excavated to a depth of 28 cmbd. Soils consisted of approximately 10 cm (10–20 cmbd) of brown (10YR 5/3) silty sandy (Ap horizon), followed by 8 cm (20–28 cmbd) of mottled strong brown (7.5YR 5/6) sandy clay and red (2.5YR 5/8) sandy clay subsoil. Excavation of the test unit was terminated at subsoil.

No artifacts were recovered from TU 4.

5.4.2 Results of Analysis

In all, 139 artifacts (61 prehistoric and 78 historic) were recovered from three test units. Approximately 57 percent (n=78) of the artifacts consisted of historic artifacts, while the next most common category was lithic debitage (n=42; 30%), followed by prehistoric ceramic (n=16; 12%) and then expedient tools (n=2; 1%) (Figure 5.40).

A total of 44 lithic artifacts included one Coastal Plain chert utilized flake, one quartzite hammerstone, and 42 pieces of debitage (33 Coastal Plain chert and nine quartz) (Figures 5.41 and 5.42). There were no formal tools recovered from 9RI1154, but the ratio of debitage to expedient tools was low at 42:1, indicating a short term camp site where tool refining was likely to be occurring more frequently than tool manufacture.

Artifact density in test units ranged from no artifacts in TU 4 to 93 artifacts in TU 2, with a mean of 31.5 artifacts per test unit. The northwestern and central portion of site contained the densest concentration of artifacts in TU 2 (n=93) and TU 3 (n=21). The north central and southern portion of the site contained the least number of artifacts with TU 1 (n=12) and TU 4 (n=0).

Prehistoric artifacts were found at depths ranging from the surface of the site and from 0 to 89 cmbs (10–99 cmbd) in the test units, with 30 percent of the prehistoric artifacts (n=18) being found on the surface and in the plowzone (10–22 cmbd/0–12 cmbs), and another six percent (n=4) being found directly beneath the plowzone (22–32 cmbd/12–22 cmbs). TU 2 and TU 3 were the only test units to have artifacts recovered from intact stratigraphy and they account for 64 percent (n=39) of the prehistoric artifacts recovered from site 9RI1154 (Figure 5.43).
Artifact types at site 9RI1154

- Prehistoric Pottery, n=16
- Expedient Tools, n=2
- Historic Artifacts, n=79
- Debitage, n=42

Figure 5.40. Site 9RI1154 artifact types.

Figure 5.41. Quartzite hammerstone from site 9RI1154.
Figure 5.42. Coastal Plain chert utilized flake from site 9RI1154.

<table>
<thead>
<tr>
<th>Number of Artifacts by Provenience/Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>Surface</td>
</tr>
<tr>
<td>Level 1</td>
</tr>
<tr>
<td>Level 2</td>
</tr>
<tr>
<td>Level 3</td>
</tr>
<tr>
<td>Level 4</td>
</tr>
<tr>
<td>Level 5</td>
</tr>
<tr>
<td>Level 6</td>
</tr>
<tr>
<td>Level 7</td>
</tr>
<tr>
<td>Level 8</td>
</tr>
<tr>
<td>Level 9</td>
</tr>
</tbody>
</table>

Figure 5.43. Number of artifacts per level at site 9RI1154.
Regarding the selection of lithic raw materials used at site 9R1154, Coastal Plain chert (n=34, 77%) was the most common material type in the debitage assemblage, followed by quartz (n=9, 21%) and quartzite (n=1, 2%) (Figure 5.44). The hammerstone was manufactured out of quartzite and the utilized flake was made from Coastal Plain chert. Coastal Plain chert comes from two primary locations in Georgia, southwestern Georgia, west of the Flint River, and southeastern Georgia, along the Savannah River, south of Augusta (Goad 1979). Chert that is not Coastal Plain chert has also been found in the Coastal Plain and Piedmont physiographic regions along major river drainages.

Quartz outcrops have been noted in Burke, DeKalb, Hancock, and Monroe counties in Georgia. Burke County is directly south of the project area and site 9R1154. The other source locations are to the northwest of Augusta and in the central portion of Georgia to the south and east of Atlanta.

Mass analysis was used for size grading the lithic debitage found at site 9R1154 (Ahler 1989). Size Grade 1 represents debitage that is greater than 1 inch; Size Grade 2 is debitage that is between ½ and 1 inch; Size Grade 3 is between ¼ and ½ inch; and Size Grade 4 is debitage smaller than ¼ inch. As shown in Figure 5.45, 90 percent (n=38) of the debitage was less than ½ inch in size (Size Grades 3 and 4), while 10 percent (n=4) was greater than ½ inch. These numbers indicate that the site was used primarily for tool maintenance (e.g., resharpening) and modification; however, some primary reduction activities were occurring as well.

A total of 16 prehistoric pottery sherds were recovered from site 9R1154. Of these, 12 were sufficiently large enough to characterize their temper and surface treatment, while the remaining four sherds were too small to be classified (i.e. residual sherds). These ceramics date to the Mississippian Savannah series (n=1) and the Middle Woodland Yadkin series (n=5); the remainder of the pottery includes non-diagnostic sand tempered pottery (n=6). Different surface treatments were identified on the pottery recovered from site 9R1154; these include plain (n=4), smoothed (n=2), simple stamped (n=1), and curvilinear complicated stamped (n=1) (Figures 5.46 through 5.48). The curvilinear complicated stamped dates to the Mississippian Savannah series (1000–350 B.P.) and the crushed quartz tempered pottery dates to the Middle Woodland Yadkin series (2500–1500 B.P.).
Figure 5.44. Lithic raw materials at site 9RI1154.

Figure 5.45. Lithic debitage size grades at site 9RI1154.
Figure 5.46. Prehistoric pottery from site 9RI1154, from left to right, smoothed and simple stamped.

Figure 5.47. Prehistoric pottery from site 9RI1154, curvilinear complicated stamped.
5.4.3 **Summary**

Site 9RI1154 is a Middle to Late Woodland and Mississippian campsite and historic artifact scatter located on a sandy ridge overlooking a tributary of McBean Creek. Approximately 98 percent (n=280) of the prehistoric artifacts recovered during the Phase II testing were recovered from intact deposits and included two of the temporally diagnostic artifacts. No temporally diagnostic stone tools were recovered from the site and there were no features or concentrations of artifacts identified during test unit excavation.

Site 9RI1154 is not associated with events that have made a significant contribution to the broad patterns of history (Criterion A); is not associated with the lives of significant persons in the past (Criterion B); does not embody the distinctive characteristics of a type, period, or methods of construction, represent the work of a master, possess high artistic values, or represent a significant and distinguishable entity whose components may lack individual distinction (Criterion C); and the minimal artifact diversity and quantity throughout the site, the lack of features or concentrations of artifacts identified at the site, and the lack of diagnostic lithic artifacts suggests that it is unlikely that site 9RI1154 will contribute new or significant information to the prehistory of the area (Criterion D). Based on the reasoning stated above, site 9RI1154 is recommended not eligible for inclusion in the NRHP.
5.5 Johnson Cemetery (9RI1165)

On June 28, 2021, tree and brush clearing was completed around Johnson Cemetery (9RI1165) to allow for the geophysical investigation to take place on July 1, 2021. A brush hog was used to clear tall brush and small trees surrounding the cemetery and the vegetation within the chain link fence was cleared using a weed wacker (Figures 5.49 and 5.50). The geophysical survey was completed inside and outside the current chain link fence boundaries to determine if unmarked graves are present and define the extents of the cemetery outside its known boundaries, if necessary (Figure 5.51). Site 9RI1165 is a mid-nineteenth to mid-twentieth century cemetery located on the edge of a landform adjacent to a dirt road (Figures 1.4 and 1.5).

The cemetery is not maintained but is in decent shape, with an intact chain link fence, although the gate has been removed. The earliest interment dates to 1855 and the most recent interment dates to 1937. There are at least 11 marked graves with a mixture of traditional headstones and footstones or graves that are outlined with brick. Surnames present in the cemetery are Dickinson, Greiner, and Johnson.

A 15-ft area outside the chain link fence and the area within the chain link fence were investigated during the geophysical survey. Ground truthing was completed at one of the possible unmarked grave locations identified during the survey to determine if the anomaly identified was truly an unmarked grave. During the ground truthing, buried brick, similar to that which outlines other graves within the cemetery, was encountered along with an intact shell (Figure 5.52). Once these items were encountered, the area was backfilled. As a result of the geophysical investigation, probing at the locations identified as anomalies, and ground truthing, three unmarked graves were identified within the chain link fence boundary; there were no anomalies identified outside the chain link fence (Appendix C).

The cemetery boundary is considered the chain link fence, which measures 50 m east/west by 40 m north/south (Figure 5.53). Site 9RI1165 remains unevaluated for inclusion in the NRHP, avoidance of the cemetery is recommended, and the cemetery boundary should be marked as an environmentally sensitive area on site/construction plans.
Figure 5.49. Brush clearing at the Johnson Cemetery, 9RI1165, facing east.

Figure 5.50. Brush clearing at the Johnson Cemetery, 9RI1165, facing northeast.
Figure 5.51. Overview of the Johnson Cemetery, 9RI1165, showing pink flags of geophysical findings, facing southeast.

Figure 5.52. Buried brick and shell representing an unmarked grave at the Johnson Cemetery, 9RI1165.
Site Map - Johnson Cemetery (9RI1165)

LEGEND

- Unmarked Burial
- Brick-Lined Grave
- Coping Lined Burial
- Headstone
- Footstone

Meters

Opening

Chain Link Fence

SCALE:

DATE:
9/3/2021

PROJECT NUMBER:
213570

Cultural Resources Evaluation
Augusta Corporate Park
Richmond County, Georgia
5.6 ACP-1 - 1053 Horseshoe Road

Recourse ACP-1, located at 1053 Horseshoe Road, is located north of the project area (Figures 1.4 and 1.5) and has historically been a farm complex. The property currently has one residential structure, three associated historic outbuildings, and one ancillary structure. The main building is a circa 1934 one-story, vernacular farmhouse with Craftsman-style details and an addition on the north (rear) elevation that dates to the late 1970s (Figures 5.54 through 5.56). The roof is a front-gable with projecting front- and side-gabled porticos supported by decorative wrought iron columns. The original structure has deep eaves with exposed raftertails and decorative triangle brackets, typical of the Craftsman architectural style (Figure 5.57). The gable on the modern addition has a shallower pitch with none of the Craftsman-style details; the roofing material on the original portion is standing-seam metal, whereas the roofing material on the addition is asphalt shingles. The exterior of the original portion of the building is stucco. The windows are vertical three-over-one and vertical four-over-one, double-hung, wood sash in the typical Craftsman style. The modern addition is clad in vinyl siding, with horizontal two-over-two, double-hung, aluminum sash windows. The foundation throughout is continuous brick masonry.

There are three historic outbuildings associated with the property and one farming structure (Figure 5.58 through 5.60). The circa 1930s shack is the oldest associated outbuilding, dating to the original construction period of the house (Figure 5.61). The shack is of wooden construction and is sheathed in rough-hewn, vertical wood plank; it is covered with a standing-seam metal, front-gabled roof. Although the structure is in disrepair, the design is important to note because a larger barn of the same construction was formerly located on the property and demolished in the 2010s; according to the current owner, the shack will be demolished in the near future (Figure 5.62). The second associated outbuilding is a circa 1950 half-story, concrete masonry unit pump house with a front-gabled roof that is covered in standing-seam metal (Figure 5.63). The circa 1950s feed barn is located further north on the property, in a wooded area between sections of fields (Figure 5.64). The feed barn is a one-story, concrete masonry unit building with side-gabled roof covered in standing-seam metal. Due to severe deterioration and overgrowth, roughly half of the building has fallen down. A circa 1950s water silo is located near the feed barn (Figure 5.65). The silo is roughly one-story and covered in corrugated metal; it is topped with a conical standing-seam metal roof. The structure is in good condition but is no longer operational.

The current 68.14-acre parcel on which the house and outbuildings stand includes three former fields, separated by treed vegetative borders, and a portion of a fourth field, to the north of the silo and feed barn. The adjacent property to the north, also 68.14 acres in size, is owned by the same owner as the subject parcel and contains the balance of the field adjacent to the silo and feed barn and an additional field. These fields correspond to the extent of the cleared farm fields surrounding the house in the mid-twentieth century, based on the 1949 aerial photograph (Figure 5.60).

During fieldwork, the current owner of the property, Bennie Beal Chavous, conducted a tour of the property for S&ME personnel and relayed much of the family information. The property has been owned by his family for roughly 100 years, continuously operating as a farm. Throughout the mid-twentieth century the farm raised hogs and cattle, when livestock production became a significant aspect of farming in Georgia following World War II and grew as an alternative to cotton growing, which had been devastated in the early part of the century by the boll weevil (Messick et al. 2001:45-47). Later in the century, the farm switched to hay production, due to high overhead costs and low market prices of cattle and hogs on the scale that could be produced from the property.
Figure 5.54. 1053 Horseshoe Rd, circa 1939, facing northwest.

Figure 5.55. 1053 Horseshoe Rd, circa 1939, facing west.
Figure 5.56. 1053 Horseshoe Rd modern addition, facing southeast.

Figure 5.57. 1053 Horseshoe Rd, bracket and rafter details, facing northeast.
Figure 5.58. Property at 1053 Horseshoe Rd showing approximate location of structures, from Google Maps 2021.

Figure 5.59. Property at 1053 Horseshoe Rd showing approximate location of structures, from Augusta GIS.
Figure 5.60. Property at 1053 Horseshoe Rd showing approximate location of structures, from Augusta GIS 1949.

Figure 5.61. Circa 1930s shack, facing northeast.
Figure 5.62. Site of barn, slightly north of the shack, facing northeast.

Figure 5.63. Pump house, circa 1950s, facing north.
Figure 5.64. Feed barn, circa 1950s, facing west.

Figure 5.65. Water silo, circa 1950s, facing southeast.
In 1992, Bennie Chavous applied for a special valuation of the property based on its use as a farm, claiming 50 acres of crop lands, 86.35 acres of timber land, and one crop storage building (Richmond County Register of Deeds 1992 Book 608:1971). Hay farming on the property continued until the end of the twentieth century, when similar issues with high overhead and low market prices made farming the land inefficient on the scale at which the property could produce. Currently, there is no farming activity taking place on the property with no plans to start any type of farming in the future.

Bennie Chavous is the son of Milton Beal Chabous (1904–1985) and Mary Broome Chavous (1908–1973). Bennie Chavous owned the property jointly with his brother, Emory M “Sonny” Chavous, during the late twentieth century until Emory Chavous’s death in 2020; the brothers likely inherited the property from their parents. Milton Chavous was the son of Henry Bostick Chavous (1869–1933) and Rosa P. Cates Chavous (1879–1949); the construction year of the house corresponds to Milton potentially inheriting a portion of his father’s land. Henry B. Chavous had purchased the farmland from Hamilton Phinizy in 1915, likely adding to land he already owned, as the Chavous family had lived in Georgia Militia District 124, which included the project area, since at least 1860 (Richmond County Register of Deeds 1915 Book 8H:36; United States Census Bureau 1860).

In 1910, Henry and Rosa Chavous, along with their four children, were living in Militia District 124. Henry Chavous identified himself as a farmer and the family owned the farm on which they lived (United States Census Bureau 1910). In 1920, the Chavous family was living on the “Savannah Road” in Militia District 124, on a farm that they owned; Henry Chavous, along with his two sons, John and Milton, were identified as farmers (United States Census Bureau 1920). By 1925, both Milton and John were working as attendants at the United States Veterans Hospital (Augusta City Directory 1925). In 1930, Milton and John Chavous were living together in a house that they rented on Hephzibah Road, with John working as a farmer and Milton working as a truck driver for the public school (United States Census Bureau 1930). Ten years later, Milton Chavous had married Mary Broome and the couple were living in Militia District 124, on a farm they owned, near Bennock Mill Road; Milton identified himself as a farmer, which he also did on his 1940 draft card, where he listed his place of residence as McBean (United States Census Bureau 1940; World War II Draft Cards 1940:2555). In 1954 and 1960, Milton B. Chavous was working as a bus driver for the Augusta City Board of Education and residing in McBean (Augusta City Directory 1954, 1960). Based on his sporadic appearances in the city directories between 1925 and the 1950s, Milton Chavous appears to have picked up work with the city when farming was unprofitable. In 1958, Bennie Chavous was a clerk at Winn-Dixie in Augusta and Emory Chavous was an attendant at the City Aviation Department; both were living in McBean at the time, which is the area in which the project area is located (Augusta City Directory 1958).

In terms of rural farmsteads, the collection of buildings and landscape and the changes they have undergone throughout their usage periods allowed for the completion of necessary farm tasks and contribute to the history of the property. The property represents a typical early to mid-twentieth century family farm with the main house serving as example of a vernacular farmhouse with contemporary Craftsman-style features. “In order for a property to be eligible for the NRHP in Georgia in the area of agriculture, a minimum of two of the following three elements should be represented with the required historic integrity: an extant farmhouse or main building, one or more agricultural outbuildings or ancillary structures from the period of significance, and an identifiable agricultural landscape with few changes from the period of significance” (Messick et al. 2001:116–117).

While ACP-1 retains a farmhouse, one early twentieth century outbuilding, three mid-twentieth century outbuildings, and a recognizable agricultural landscape, integrity issues with the house and loss of outbuildings from the original construction period of the farm present issues with integrity. The house retains much of the Craftsman-style detailing in the deep eaves, exposed raftertails, brackets, and windows, although the decorative
metal porch brackets are replacements from the originals, which were likely tapered columns that would have fit with the Craftsman aesthetic. The large 1970s addition to the north elevation of the building diminishes the integrity of design of the house. One 1930s outbuilding remains standing on the property and additional structures from the mid-twentieth century farm also remain, but due to deterioration they have lost integrity of workmanship, materials, and design; additionally, the loss of the original barn has further affected the complex's integrity of design and feeling. The property retains its integrity of setting, which retains the rural character that is had historically, and feeling, as an early to mid-twentieth century farm property. However, due to the loss of historic outbuildings associated with the farming production on the property and alterations to the main house, it is S&ME’s recommendation that the property at 1053 Horseshoe Road is ineligible for the NRHP.
Conclusions and Recommendations

On behalf of Cranston Engineering Group, P.C., S&ME has completed Phase II testing at archaeological sites 9RI192, 9RI1137/1139, 9RI1138, and 9RI1154, additional research on historic resource ACP-1, and ground penetrating radar (GPR) at the Johnson Cemetery (9RI1165) at the Augusta Corporate Park, Richmond County, Georgia.

As a result of the cultural resources evaluations, site 9RI1140 and 9RI1166, Cemetery 1, have been avoided by previous activities at the site. Although tree clearing has occurred at site 9RI1140, ground disturbance appears minimal. Avoidance of these two areas and marking them as ESAs on construction plans should be completed prior to ground disturbance in the areas around the two sites. If avoidance is not possible, Phase II testing should be completed at site 9RI1140 and the state laws governing moving abandoned cemeteries should be followed.

Based on the additional research and NRHP evaluation completed for ACP-1, the resource is recommended not eligible for inclusion in the NRHP. Geophysical investigations completed at site 9RI1165, Johnson Cemetery, revealed that there are no unmarked graves outside the current chain link fence boundary. There are at least three unmarked graves within the chain link fence boundary. It is recommended that the site be marked as an ESA on construction plans prior to construction commencing and the cemetery be avoided. If avoidance is not possible the state laws governing moving abandoned cemeteries should be followed.

Based on the Phase II testing at sites 9RI192, 9RI1137/1139, 9RI1138, and 9RI1154, S&ME recommends that sites 9RI192, 9RI1137/1139, 9RI1138, and 9RI1154 are not eligible for inclusion in the NRHP. Site 9RI1138, based on the majority of the artifacts recovered (n=185; 63%), from intact deposits, the presence of an Archaic feature and diagnostic chipped stone tools in intact deposits, and a relatively large amount and moderate diversity of artifacts, is recommended eligible for inclusion in the NRHP under Criterion D, for its potential to yield important information regarding the prehistory of the area. S&ME recommends that the site be marked as an ESA with orange construction fencing surrounding the site prior to construction activities commencing. If site 9RI1138 cannot be avoided additional consultation with HPD regarding mitigation of the site will need to be conducted.

Some of the potential research questions/topics that site 9RI1138 could address are:

1. What is the earliest occupation at 9RI1138? How does that compare to occupations at other nearby sites?
2. Does 9RI1138 contain diagnostic artifacts or features that could be used to help refine the chronological sequence of the area? Are there additional features dating to the Early, Middle, or Late Archaic subperiods? What do they tell us about site usage and settlement patterns during those times?
3. During the Phase I survey, Middle to Late Woodland pottery was found from intact deposits in the shovel tests, but a single prehistoric ceramic was identified during the Phase II testing. Are there discreet habitation areas or usage areas at site 9RI1138 that were used during specific time periods?
4. Was 9RI1138 occupied repeatedly over short periods during different time periods or is it a long-term habitation site (or both)?
5. What activities can be inferred from the artifacts recovered at 9RI1138? Did these activities change through time?
6. Are there faunal and/or botanical remains at the site? If so, can we reconstruct subsistence patterns and conduct seasonality studies?
Block units can be excavated (e.g., 2-x-2-m or 4-x-4-m) in areas of the site that contained substantial deposits; since the intact Archaic deposits are below the plowzone, a flat bladed backhoe can be used to remove the plowzone from the excavation areas. The cleared areas should be troweled and shovel scraped to look for features and the blocks should be excavated in 10 cm levels until subsoil or two culturally sterile levels are excavated. Excavation blocks should be scattered throughout the site to yield a diverse excavation sample.
7.0 References Cited

Adams, Natalie

Adovasio, James M., J. Donahue, and R. Stuckenrath

Adovasio, James M., J.D. Gunn, J. Donahue, R. Stuckenrath, J.E. Guilday, and K. Lord

Adovasio, James M., J.D. Gunn, J. Donahue, R. Stuckenrath, J.E. Guilday, and K. Volman

Ahler, Stanley A.

Anderson, David G.

Anderson, David G., and Glen T. Hanson

Anderson, David G., and J. W. Joseph

Anderson, David G., and Lisa O’Steen
Anderson, David G., Lisa O'Steen, and Kenneth E. Sassaman

Anderson, David G., and Kenneth E. Sassaman (editors)

Anderson, David G., Kenneth E. Sassaman, and Christopher Judge (editors)

Baker, Mary N.

Bellardo, Lewis J., Jr.

Benson, Robert W.

Blanton, Dennis B., and Kenneth E. Sassaman

Blanton, Dennis B., Christopher T. Espenshade, and Paul E. Brockington, Jr.

Braun, E. Lucy

Cable, John

Cantley, Charles E. and John S. Cable
Carta, Jean-Marie, and William Green

Cashin, Edward J.

Central of Georgia Railway Company

Coe, Joffre Lanning

Council of South Carolina Professional Archaeologists [COSCAPA], South Carolina State Historic Preservation Office, and South Carolina Institute of Archaeology and Anthropology
2005 South Carolina Standards and Guidelines for Archaeological Investigations. South Carolina Department of Archives and History, Columbia.

Covington Jonathan
2011 Augusta, Georgia, the Canal. Lulu, Incorporated, Augusta.

Cram, George Franklin
1883 Indexed Railroad and County Map of Georgia. George Franklin Cram, Chicago. Available at: <http://www.loc.gov/item/98688460/>

Daniel, I. Randolph, Jr.

Delcourt, P. A., and H. A. Delcourt

deNeeve, Ian K.
2005 Cultural Resources Reconnaissance Survey of Approximately 1600 Acres at the Pine Tree Tract, Aiken County, South Carolina. Report prepared by TRC, Columbia.
deNeeve, Ian K., William Green, and Jeff Holland
2005 *Phase I Archaeological Survey of Approximately 360 Acres at the Pine Tree Tract Aiken County, South Carolina.* Report prepared by TRC, Columbia.

DePratter, Chester B.

DePratter, Chester B., and Chris Judge

Dillehay, T. C.
1989 *Monte Verde: A Late Pleistocene Settlement in Chile.* Smithsonian Press, Washington, D.C.

Downey, Tom

Dyer, James M.

Edgar, Walter

Edmonds, Bobby F.

Faden, William
1780 *A Map of South Carolina and Part of Georgia.* William Faden, London. Available at: <http://www.loc.gov/item/74692514>

Ferrell, Lloyd P. and Margurite S. C. Terrell

Garrow, Patrick and Bruce Bauer

Georgia Department of Transportation
1951 *General Highway Map of Richmond County.* Georgia Department of Transportation, Atlanta, and United States Department of Transportation Federal Highway Administration, Washington D. C.
Cultural Resources Evaluation
Augusta Corporate Park
Richmond County, Georgia
S&ME Project No. 213570; HPD Project No. HP-141006-003

1966 *General Highway Map of Richmond County.* Georgia Department of Transportation, Atlanta, and United States Department of Transportation Federal Highway Administration, Washington D. C.
1973 *General Highway Map of Richmond County.* Georgia Department of Transportation, Atlanta, and United States Department of Transportation Federal Highway Administration, Washington D. C.
1982 *General Highway Map of Richmond County.* Georgia Department of Transportation, Atlanta, and United States Department of Transportation Federal Highway Administration, Washington D. C.

Glassow, Michael A.

Goodyear, Albert C., III
1979 *A Hypothesis for the Use of Cryptocrystalline Raw Materials Among Paleo-Indian Groups of North America.* Research Manuscript Series No. 156. South Carolina Institute of Archaeology and Anthropology, University of South Carolina, Columbia.

Goodyear, Albert C., III, James L. Michie, and Tommy Charles

Goodyear, Albert C., and Kenn Steffy

Griffin, James B.

Hanson, Glen T., and Chester B. DePratter
1985 The Early and Middle Woodland Periods in the Savannah River Valley. Paper Presented at the 42nd Annual Meeting of the Southeastern Archaeological Conference, Birmingham.

Heide, Gregory, and Michael Russo
2003 *Investigation of the Coosaw Island Shell Ring Complex (38BU1866).* Report prepared for the South Carolina Department of Natural Resources Heritage Trust Program. Report prepared by the Southeast Archeological Center, National Park Service, Tallahassee.

Herbert, Joseph M., and Mark A. Mathis
Cultural Resources Evaluation
Augusta Corporate Park
Richmond County, Georgia
S&ME Project No. 213570; HPD Project No. HP-141006-003

House, John, and David Ballenger

The Hudgins Company
1915 *Hudgins’ Map of Georgia*. The Hudgins Company, Atlanta.

Hurt, R. Douglas

Jones, Charles Colcock and Salem Dutcher
1890 *Memorial History of Augusta, Georgia*. D. Mason, Augusta.

Judge, Christopher

Justice, Noel D.

Kovacik, Charles F. and John J. Winberry

LaBrie, Brian

Lee, Joseph M.

Lloyd, James T.
1864 *Lloyd’s Topographical Map of Georgia*. J. T. Lloyd, New York. Available at: <http://www.loc.gov/item/2008628279/>

Marrinan, Rochelle A.

McAvoy, Joseph M., and Lynn McAvoy

McDonald, Jerry N.
Meltzer, David J., Donald K. Grayson, Gerardo Ardila, Alex W. Barker, Dena F. Dincauze, C. Vance Haynes, Francisco Mena, Lautaro Nunez, and Dennis Stanford

Messick, Denise P., J. W. Joseph, and Natalie P. Adams

Milanich, Jerald T.

Milanich, Jerald T. and Charles H. Fairbanks

Miller, George L.

Moser, Jason, Heather Jones, and William Green

Nagle, Kimberly and Heather Carpini

Nagle, Kimberly, and Heather Jones

Noel Hume, Ivor

Oliver, Billy
Birmingham.

Orser, Charles E., J
1988 *The Material Basis of the Postbellum Tenant Plantation: Historical Archaeology in the South Carolina Piedmont.* University of Georgia, Athens.

Phelps, David G.

Polhemus, Richard R.
1972 “Fort Moore-Savano Town Site (38AK4 and 38AK5).” National Register of Historic Places Inventory Nomination Form. On file with South Carolina Department of Archives and History, Columbia.

Reynolds, William R., Jr.

Richter, Daniel D., Jr., and Daniel Markewitz

Ripley, Warren

Ritchie, William A.

Rogers, Vergil A.

Russo, Michael, and Gregory Heide

Sassaman, Kenneth E.

Sassaman, Kenneth E., and David G. Anderson (editors)
Sassaman, Kenneth E., Meggan E. Blessing, and Asa R. Randall

Sassaman, Kenneth E., Mark J. Brooks, Glen T. Hanson, and David G. Anderson

Saunders, Rebecca, and Michael Russo
2002 *The Fig Island Ring Complex (38CH42): Coastal Adaptation and the Question of Ring Function in the Late Archaic*. Report prepared for the South Carolina Department of Archives and History, Columbia.

Social Explorer

South, Stanley
1976 *An Archaeological Survey of Southeastern North Carolina*. Notebook 8, South Carolina Institute of Archaeology and Anthropology, University of South Carolina, Columbia.

Stoltman, James B.

Swanton, John R. (editor)

Trinkley, Michael B.

United States Census Bureau
1860 *United States Federal Census*. On-line database. Available at: <www.ancestry.com>
1910 *United States Federal Census*. On-line database. Available at: <www.ancestry.com>
1920 *United States Federal Census*. On-line database. Available at: <www.ancestry.com>
1930 *United States Federal Census*. On-line database. Available at: <www.ancestry.com>
1940 *United States Federal Census*. On-line database. Available at: <www.ancestry.com>
Cultural Resources Evaluation
Augusta Corporate Park
Richmond County, Georgia
S&ME Project No. 213570; HPD Project No. HP-141006-003

United States Department of Agriculture
1916 *Richmond County*. Soil Survey Map.

United States Geological Survey (USGS)
1965 *Mechanic Hill*. 7.5 minute map series.
1971 *Mechanic Hill*. 7.5 minute map series.
1981 *Mechanic Hill*. 7.5 minute map series.

Vandervelde, Isabel
1999 *Aiken County: The Only South Carolina County Founded During Reconstruction*. The Reprint Company, Spartanburg, South Carolina.

Walker, Alice O.

Waring, Antonio J., Jr., and Preston Holder

West, Allen, and Albert C. Goodyear, III.

Williams, Stephen B. (editor)
8.0 Appendix A – HPD Correspondence
November 28, 2016

Kimberly Nagle, M.S., RPA
Senior Archaeologist
S&ME, Inc.
134 Suber Road
Columbia, South Carolina 29210

RE: Proposed Augusta Corporate Park, Mike Padgett Highway near Horseshoe Road, Augusta
Richmond County, Georgia
HP-141006-003

Dear Ms. Nagle:

The Historic Preservation Division (HPD) has reviewed the additional information submitted concerning the above referenced project. Our comments are offered to assist the Economic Development Administration (EDA) and its applicants in complying with the provisions of Section 106 of the National Historic Preservation Act of 1966, as amended (NHPA).

Based on the additional information submitted regarding archaeological sites, it is HPD's understanding that site 9RI1140 will now be avoided. HPD concurs with the establishment of orange construction fencing around the site's boundary and labeling the site as "Environmentally Sensitive Area" on any construction plans. Additionally, HPD continues to concur with the 30-foot buffer of avoidance for site 9RI1166. Therefore, HPD finds the subject project, as proposed, will have no adverse effect to archaeological sites 9RI1140 and 9RI1166, as defined in 36 CFR Part 800.5(d)(1).

In regards to other resources within the proposed project’s area of potential effect, HPD looks forward to receiving the ground penetrating radar (GPR) survey results for site 9RI1165 (Johnson Cemetery) and a thirty foot grave free buffer, the additional research regarding the eligibility of resource ACP-1, and the Phase II investigations or avoidance of the remaining archaeological sites (9RI1192, 9RI1137/1139, 9RI1138, and 9RI1154), once available.

Please refer to project number HP-141006-003 in any future correspondence regarding this project. If we may be of further assistance, please do not hesitate to contact Meg Richardson, Environmental Review Historian, at (770) 389-7852 or meg.richardson@dnr.ga.gov.

Sincerely,

Jennifer Dixon, MHP, LEED Green Associate
Program Manager
Environmental Review & Preservation Planning

JAD/mcr

cc: Anne Floyd, Central Savannah River Area Regional Commission
September 26, 2016

Kimberly Nagle, M.S., RPA
Senior Archaeologist
S&ME, Inc.
134 Suber Road
Columbia, South Carolina 29210

RE: Proposed Augusta Corporate Park, Mike Padgett Highway near Horseshoe Road, Augusta
Richmond County, Georgia
HP-141006-003

Dear Ms. Nagle:

The Historic Preservation Division (HPD) has reviewed the draft report entitled, *Phase I Cultural Resources Investigations at the Proposed Augusta Corporate Park, Richmond County, Georgia*, dated August 2016. Our comments are offered to assist the Economic Development Administration (EDA) and its applicants in complying with the provisions of Section 106 of the National Historic Preservation Act of 1966, as amended (NHPA).

Based on the information contained in the report, HPD concurs that archaeological sites 9RI1152, 9RI1153, 9RI1155, 9RI1156, 9RI1157, 9RI1158, 9RI1159, 9RI1160, 9RI1161, 9RI1162, 9RI1163, and 9RI1164 and historic resources ACP-2, ACP-3, ACP-4, ACP-5, ACP-6, ACP-7, ACP-8, ACP-9, ACP-10, ACP-11, and ACP-12 are not eligible for listing in the National Register of Historic Places (NRHP). Isolated Finds (IF) by definition are not a site. Therefore, HPD concurs that IFs 1, 2, 4, 6, 8, 11-22, 24-27, 30, 31, 32, 33, 35, and 36 are not eligible for listing in the NRHP.

Additionally, HPD concurs that the overall eligibility for archaeology sites 9RI1154, 9RI1166 (Cemetery 1), previously recorded sites 9RI192, 9RI1138, and 9RI1140, newly joined site 9RI1137/1139, and resource ACP-1 are unknown for listing in the NRHP. HPD is unable to concur with the NRHP-eligibility recommendation for archaeological site 9BR1165 (Johnson Cemetery). HPD did not previously review and comment on eligibility recommendations presented in the 2014 *Cultural Resources Literature Review and Reconnaissance Survey* prepared by Nagle and Carpini. Therefore, it is HPD’s opinion that the eligibility of site 9BR1165 is unknown for listing in the NRHP.

Regarding sites 9RI1154, previously recorded sites 9RI192, 9RI1138, and 9RI1140, newly joined site 9RI1137/1139, HPD concurs with the recommendation for additional Phase II archaeological testing to determine NRHP-eligibility. Regarding ACP-1, HPD concurs additional research is needed to determine NRHP-eligibility. Furthermore, HPD concurs with the recommendation for avoidance of sites 9BR1165 and 9BR1166, the delineation of a 30 foot grave-free buffer, and establishing environmentally sensitive areas (ESAs) around both sites. HPD looks forward to receiving the forthcoming Ground Penetrating Survey (GPR) results for 9BR1165 (Johnson Cemetery), as well as receiving the assessment of effects for all NRHP-eligible and unknown historic properties, as soon as it becomes available.
Please refer to project number **HP-141006-003** in any future correspondence regarding this project. If we may be of further assistance, please do not hesitate to contact Meg Richardson, Environmental Review Historian, at (770) 389-7852 or meg.richardson@dnr.ga.gov.

Sincerely,

Jennifer Dixon, MHP, LEED Green Associate
Program Manager
Environmental Review & Preservation Planning

JAD/mcc

cc: Anne Floyd, Central Savannah River Area Regional Commission
August 17, 2016

Kimberly Nagle, M.S., RPA
Senior Archaeologist
S&ME, Inc.
134 Suber Road
Columbia, South Carolina 29210

RE: Proposed Augusta Corporate Park, Augusta
Richmond County, Georgia
HP-141006-003

Dear Ms. Nagle:

The Historic Preservation Division (HPD) has received information submitted concerning the above referenced project. Our comments are offered to assist the Economic Development Administration (EDA) and its applicants in complying with the provisions of Section 106 of the National Historic Preservation Act of 1966, as amended (NHPA). In order for us to complete our review and concur with your determination of eligibility and effect, HPD is in need of additional information.

Based on the information provided, it is HPD’s opinion that the project, as submitted, cannot be evaluated for eligibility and/or effects assessments to historic properties within its area of potential effect (APE) without additional information. HPD recommends revising the report to include the following information in order for HPD to evaluate the proposed project:

- Map detailing the location of the project area within the region, county, and state
- All historic resources identified through background research and field survey that are 50 years of age or older, not only those that were considered possibly eligible
- Multiple, clear photographs of each historic resource to include more than one elevation and detailed photographs that show the architectural details and materials discussed in the description
- Explanation and photographic evidence of compromised integrity of setting
- Evaluation of the integrity of feeling and association for each historic resource
- Probing methods utilized to delineate the buffer for site 9RI1166 (Cemetery 1)
- Individual archaeology sites on applicable historic maps referenced throughout discussions
- Corrected historic map figure number ‘H6’
- Resume of the Principal Investigator
- Name and location of curation facility

We look forward to reviewing the requested information and working with you as this project progresses. Please refer to project number HP-141006-003 in any further correspondence regarding this project. If we may be of further assistance, please do not hesitate to contact Meg Richardson, Environmental Review Historian, at meg.richardson@dnr.ga.gov or (770) 389-7852.

Sincerely,

Jennifer Dixon, MHP, LEED Green Associate
Program Manager
Environmental Review & Preservation Planning

JAD/mcr
cc: Anne Floyd, Central Savannah River Area Regional Commission
Dear Ms. Nagle:

The Historic Preservation Division (HPD) has reviewed the draft cultural resource literature review and reconnaissance survey report entitled *Cultural Resources Literature Review and Reconnaissance Survey of Approximately 1,612 Acres at the Augusta Corporate Park*, prepared by S&ME, Inc. and dated October 1, 2014. Our comments are offered to assist federal agencies and their delegates in complying with the provisions of Section 106 of the National Historic Preservation Act (NHPA).

As proposed in its concept phase, the project cannot be evaluated under Section 106 nor does the document satisfy the requirements of Section 106 of the NHPA or compliance with 36 CFR Part 800. However, for early consultation purposes and based on the information provided, we offer the following comments:

- HPD concurs with the recommendation that the approximately 993 acres demonstrating moderate to high probability for archaeological sites at the proposed Augusta Corporate Park be evaluated using an intensive and systematic Phase I archaeological survey by a Secretary of the Interiors-qualified archaeologists (refer to “Figure 24: Areas recommended for additional work”).

- An archaeological site form for the Johnson cemetery should be submitted. HPD recommends that additional testing (i.e. systematic probing or GPR) be performed outside of the chain link fence boundary to confirm the absence of outlying graves. Future construction activities in this area will require that the cemetery be treated as an Environmentally Safe Area, with an appropriate buffer marked by orange rip rap.

- HPD finds that additional identification of any structures that are 50 years of age or older that are located in and adjacent to the proposed project tract, including any nearby properties that could have visual or other effects, would be necessary. HPD recommends reviewing topographic maps, the county tax assessor site, and if necessary, completing a field survey in order to identify resources.

HPD looks forward to receiving this information once Section 106 is initiated and a federal agency is involved. Please refer to project number **HP-141006-003** in any future correspondence.
concerning this project. If we may be of further assistance, please do not hesitate to contact Jennifer Bedell, Archaeology Compliance Unit Manager, at (404) 657-1042 or jennifer.bedell@dnr.state.ga.us or Meg Richardson, Environmental Review Historian, at (404) 651-6624 or meg.richardson@dnr.state.ga.us.

Sincerely,

Jennifer Dixon, MHP, LEED Green Associate
Program Manager
Environmental Review & Preservation Planning

JAD:mcr

Cc: Anne Floyd, Central Savannah River Area Regional Commission
David Crampton, USACE
9.0 Appendix B – Artifact Catalog
<table>
<thead>
<tr>
<th>Site #</th>
<th>Cat. #</th>
<th>Provenience</th>
<th>Level (cm/ft)</th>
<th>C-ont</th>
<th>Weight (g)</th>
<th>Class</th>
<th>Category</th>
<th>Sub-category</th>
<th>Type/Description</th>
<th>Material</th>
<th>Portion</th>
<th>Temper</th>
<th>Lithic Size Grade</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>9RI 1054</td>
<td>1-01</td>
<td>General Surface</td>
<td>110-120</td>
<td>1</td>
<td>0.20</td>
<td>Lithic</td>
<td>Debitage</td>
<td>Non-cortical</td>
<td>Coarse Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Sand</td>
<td>4</td>
<td>5</td>
<td>Present</td>
</tr>
<tr>
<td>Site #</td>
<td>Cat. #</td>
<td>Provenience</td>
<td>Level (niche)</td>
<td>Count</td>
<td>Weight (g)</td>
<td>Class</td>
<td>Category</td>
<td>Sub-category</td>
<td>Type/Description</td>
<td>Material</td>
<td>Portion</td>
<td>TEMPER</td>
<td>Lithic Size Grade</td>
<td>Notes</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>-------------</td>
<td>---------------</td>
<td>--------</td>
<td>------------</td>
<td>-------</td>
<td>----------</td>
<td>-------------</td>
<td>-----------------</td>
<td>-----------</td>
<td>----------</td>
<td>--------</td>
<td>------------------</td>
<td>-------</td>
</tr>
<tr>
<td>9RI154</td>
<td>3.05 TJ 1</td>
<td>11-02</td>
<td>2.0</td>
<td>Glass</td>
<td>Machine Molded</td>
<td>Und. Vessel</td>
<td>Plain</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Clear</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9RI154</td>
<td>3.06 TJ 1</td>
<td>11-20</td>
<td>0.1</td>
<td>Metal</td>
<td>Personal Item</td>
<td>Eyelet</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Clear</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9RI154</td>
<td>4.01 TJ 3</td>
<td>11-20</td>
<td>4.0</td>
<td>Coastal Plain Chert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9RI154</td>
<td>4.02 TU 2</td>
<td>11-10</td>
<td>1.5</td>
<td>Lithic</td>
<td>Debitage</td>
<td>Non-cortical</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9RI154</td>
<td>4.03 TU 2</td>
<td>11-10</td>
<td>2.4</td>
<td>Lithic</td>
<td>Vessel</td>
<td>Und. Vessel</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9RI154</td>
<td>4.04 TU 2</td>
<td>11-10</td>
<td>2.3</td>
<td>Metal</td>
<td>Offic</td>
<td>Und. Metal</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9RI154</td>
<td>4.05 TU 3</td>
<td>11-10</td>
<td>1.5</td>
<td>Coastal Plain Chert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9RI154</td>
<td>4.06 TU 3</td>
<td>11-10</td>
<td>1.5</td>
<td>Coastal Plain Chert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9RI154</td>
<td>4.07 TU 3</td>
<td>11-10</td>
<td>1.5</td>
<td>Coastal Plain Chert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9RI154</td>
<td>4.08 TU 3</td>
<td>11-10</td>
<td>1.5</td>
<td>Coastal Plain Chert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9RI154</td>
<td>5.01 TU 2</td>
<td>21-39</td>
<td>11.0</td>
<td>P. Ceramic</td>
<td>Vessel</td>
<td>Plain</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9RI154</td>
<td>5.02 TU 2</td>
<td>21-39</td>
<td>0.1</td>
<td>Lithic</td>
<td>Debitage</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9RI154</td>
<td>5.03 TU 2</td>
<td>21-39</td>
<td>0.1</td>
<td>Glass</td>
<td>Window Glass</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9RI154</td>
<td>5.04 TU 2</td>
<td>21-39</td>
<td>1.0</td>
<td>P. Ceramic</td>
<td>Window Glass</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9RI154</td>
<td>5.05 TU 2</td>
<td>21-39</td>
<td>1.3</td>
<td>Lithic</td>
<td>Debitage</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9RI154</td>
<td>6.01 TJ 3</td>
<td>22-39</td>
<td>2.5</td>
<td>Glass</td>
<td>Machine Molded</td>
<td>Und. Vessel</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9RI154</td>
<td>6.02 TJ 3</td>
<td>22-39</td>
<td>1.5</td>
<td>Lithic</td>
<td>Debitage</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9RI154</td>
<td>7.01 TU 2</td>
<td>4.03</td>
<td>1.0</td>
<td>Lithic</td>
<td>Debitage</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9RI154</td>
<td>7.02 TU 2</td>
<td>4.03</td>
<td>1.0</td>
<td>Lithic</td>
<td>Debitage</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9RI154</td>
<td>7.03 TU 2</td>
<td>4.03</td>
<td>1.0</td>
<td>Lithic</td>
<td>Debitage</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9RI154</td>
<td>7.04 TU 2</td>
<td>4.03</td>
<td>1.0</td>
<td>Lithic</td>
<td>Debitage</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9RI154</td>
<td>7.05 TU 2</td>
<td>4.03</td>
<td>1.0</td>
<td>Lithic</td>
<td>Debitage</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9RI154</td>
<td>8.01 TJ 3</td>
<td>6.09</td>
<td>1.0</td>
<td>P. Ceramic</td>
<td>Vessel</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9RI154</td>
<td>8.02 TJ 3</td>
<td>6.09</td>
<td>1.0</td>
<td>P. Ceramic</td>
<td>Debitage</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9RI154</td>
<td>8.03 TJ 3</td>
<td>6.09</td>
<td>1.0</td>
<td>P. Ceramic</td>
<td>Debitage</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9RI154</td>
<td>8.04 TU 2</td>
<td>6.09</td>
<td>1.0</td>
<td>Lithic</td>
<td>Debitage</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9RI154</td>
<td>8.05 TU 2</td>
<td>6.09</td>
<td>1.0</td>
<td>Lithic</td>
<td>Debitage</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9RI154</td>
<td>8.06 TU 2</td>
<td>6.09</td>
<td>1.0</td>
<td>Lithic</td>
<td>Debitage</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9RI154</td>
<td>8.07 TU 2</td>
<td>6.09</td>
<td>1.0</td>
<td>Lithic</td>
<td>Debitage</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9RI154</td>
<td>8.08 TU 2</td>
<td>6.09</td>
<td>1.0</td>
<td>Lithic</td>
<td>Debitage</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9RI154</td>
<td>8.09 TU 2</td>
<td>6.09</td>
<td>1.0</td>
<td>Lithic</td>
<td>Debitage</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9RI154</td>
<td>8.10 TU 2</td>
<td>6.09</td>
<td>1.0</td>
<td>Lithic</td>
<td>Debitage</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9RI154</td>
<td>8.11 TU 2</td>
<td>8.79</td>
<td>2.0</td>
<td>Lithic</td>
<td>Debitage</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9RI154</td>
<td>8.12 TU 2</td>
<td>8.79</td>
<td>2.0</td>
<td>Lithic</td>
<td>Debitage</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9RI154</td>
<td>8.13 TU 2</td>
<td>8.79</td>
<td>2.0</td>
<td>Lithic</td>
<td>Debitage</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9RI154</td>
<td>8.14 TU 2</td>
<td>8.79</td>
<td>2.0</td>
<td>Lithic</td>
<td>Debitage</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9RI154</td>
<td>8.15 TU 2</td>
<td>8.79</td>
<td>2.0</td>
<td>Lithic</td>
<td>Debitage</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9RI154</td>
<td>8.16 TU 2</td>
<td>8.79</td>
<td>2.0</td>
<td>Lithic</td>
<td>Debitage</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9RI154</td>
<td>8.17 TU 2</td>
<td>8.79</td>
<td>2.0</td>
<td>Lithic</td>
<td>Debitage</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9RI154</td>
<td>8.18 TU 2</td>
<td>8.79</td>
<td>2.0</td>
<td>Lithic</td>
<td>Debitage</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9RI154</td>
<td>8.19 TU 2</td>
<td>8.79</td>
<td>2.0</td>
<td>Lithic</td>
<td>Debitage</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9RI154</td>
<td>8.20 TU 2</td>
<td>8.79</td>
<td>2.0</td>
<td>Lithic</td>
<td>Debitage</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9RI154</td>
<td>8.21 TU 2</td>
<td>8.79</td>
<td>2.0</td>
<td>Lithic</td>
<td>Debitage</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9RI154</td>
<td>8.22 TU 2</td>
<td>8.79</td>
<td>2.0</td>
<td>Lithic</td>
<td>Debitage</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9RI154</td>
<td>8.23 TU 2</td>
<td>8.79</td>
<td>2.0</td>
<td>Lithic</td>
<td>Debitage</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9RI154</td>
<td>8.24 TU 2</td>
<td>8.79</td>
<td>2.0</td>
<td>Lithic</td>
<td>Debitage</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9RI154</td>
<td>8.25 TU 2</td>
<td>8.79</td>
<td>2.0</td>
<td>Lithic</td>
<td>Debitage</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td>Coastal Plain Chert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
10.0 Appendix C – GPR Report
Technical Report
Geophysical Evaluation for Unmarked Graves
Johnson Cemetery

Prepared For:
Kimberly Nagle, M.S., RPA
Senior Archaeologist/Project Manager S&ME
134 Suber Road
Columbia, SC 29210

Prepared By:
Reed Tech Utility and Geophysical Locating
PO Box 61104
Columbia, SC 29260

July 16, 2021
Re: Geophysical Evaluation for Unmarked Graves

Dear Ms. Nagle,

Reed Tech is pleased to submit this report of a geophysical evaluation of the Johnson Cemetery in Augusta, GA completed on 7/1/21. This is a small cemetery that was identified as potentially having unmarked graves dating back to the possibly the 18th, 19th, and early 20th centuries. Using electromagnetic profiling and ground penetrating radar geophysical methods, along with a probe rod, several unmarked or partially marked graves were found. The following report reviews the methods and results of geophysical evaluation.

Please do not hesitate to call if you have any questions concerning this report. We appreciate the opportunity to have worked with you on this project.

Sincerely,

Duke Brantley, PhD, PG
President
Reed Tech Utility and Geophysical Locating
Background
The site is located in a forested area that has been clear cut. Efforts were made prior to the evaluation to clear smaller vegetation and surface debris within the area of investigation. A few trees, stumps, and a fence were in the study and inhibited geophysical detection in these areas. Marked graves were present and are arranged in rows. It was thought that unmarked graves potentially exist in the surrounding the marked graves. Thus, Kimberly Nagle of S&ME contacted Reed Tech Utility and Geophysical Locating to assist in locating unmarked graves in this area. A site location map showing the approximate location of the evaluation is presented below in Figure 1.

![Site location map of the Johnson Cemetery in Augusta, GA.](image-url)
Technical Approach
Reed Tech completed the geophysical evaluation on July 1st, 2021 utilizing two geophysical methods to investigate the site:

Multifrequency Electromagnetic Evaluation
A high resolution electromagnetic (EM) evaluation was completed using a GSSI EMP-400 multifrequency electromagnetic profiler. Two separate surveys were conducted both using three frequencies (5000 Hz, 10,000 Hz, and 15,000 Hz) but different grids and orientation. The EM data was collected on a hand-held Trimble Recon data logger that communicated with the EMP-400 unit via Bluetooth. The Trimble Recon has a GPS unit which is augmented by the Wide Area Augmentation System (WAAS) and is capable of high accuracy and real-time location data. The EM profiler was carried by hand approximately six inches above ground. The EM method is useful at evaluating the shallow subsurface for both metallic and non-metallic conductive materials such as variations in soil conductivity which may be related to the presence/absence of graves.

Ground Penetrating Radar
Reed Tech completed a detailed ground penetrating radar (GPR) evaluation over the entire site. Reed Tech utilized a Mala HDR radar unit outfitted with a 450 MHz antenna. Due to the near surface nature (< 6 feet) of graves from this time, the 450 MHz antenna provides the optimum compromise between resolution and depth of penetration necessary to detect unmarked graves. The site had woody debris/stumps left from the recent vegetative clearing efforts. The surficial debris, combined with the subsurface debris from previous deforestation, created inference and noisy data in these areas.

Results
Several unmarked graves were located (Appendix 1) in the area(s) adjacent to the marked graves. The disturbed soil conditions from the graves were different enough from the surrounding natural conditions to be detectable with the electromagnetic profiler and ground penetrating radar geophysical methods. A probe rod was also used as corroborating evidence of the unmarked graves. There was a discernable difference in the “feel” in the resistance of the probe rod being pushed into the ground at the marked graves verses the surrounding natural conditions, thus serving
as a reference. All areas identified by geophysical methods as potential unmarked graves also had a similar feel when probed as those of the marked graves.

Multifrequency Electromagnetic Evaluation

Reed Tech completed an EM evaluation with parallel profiles around the entire property in two orientations. Once adequate survey coverage was achieved, the EM field data were post-processed to produce a .dat file. These data were then processed using an inversion program to calculate the apparent conductivity and in-phase values for each EM frequency collected (5000 Hz, 10,000 Hz, 15,000 Hz). Typically, the in-phase data (sometimes referred to as the metal detection mode) is more representative of buried metallic materials whereas the apparent conductivity (sometimes referred to as quadrature data) is more representative of non-metallic conductive variations in the subsurface. By evaluating both the in-phase and apparent conductivity response, the horizontal extents of the conductive and non-metallic subsurface anomalies can be characterized. All acquired frequencies were processed and interpreted. The 10,000 Hz data was chosen to create a figure for this report. The theme through most of the electromagnetic survey methods is that lower frequencies = deeper penetration at the cost of a courser resolution (targets need to be larger to “resolve”). 10,000 Hz was the optimum frequency for the soil conditions and depth of investigation at this site location. Shown on Figure 2 is the EM apparent (quadrature) conductivity results georeferenced and overlain on Google Earth satellite imagery. Anomalies such as graves can often be identified by the contrast of the disturbed soils versus the surrounding undisturbed soils. In Figure 2, the anomalous area circled in red indicate the area of marked and unmarked graves. The detection and visualization of the marked graves increases confidence in the efficacy of the EMP method for identifying unmarked graves at this site. In theory, if the marked graves show up in the data, unmarked graves should as well.

The anomalous area in the southern section of the data was thoroughly scanned using GPR and no graves were detected. The reason for the EM in this area contrast is inconclusive.
Figure 2: 10,000 Hz quadrature (apparent conductively) electromagnetic profiling results georeferenced and overlain Google Earth aerial imagery. Background conditions are the blue to purple coloration. Anomalies (areas different than background) are the green and red colors. The anomalies circled in red are the marked and unmarked graves. The small anomalous green area in the southern section of the data was not determined to be unmarked graves.

Ground Penetrating Radar Evaluation
Initially, we started the GPR survey by going over the existing graves to see if the graves were detectable. Typically, graves from this time-period will still be detectable due to the contrast of the disturbed soil from the grave verses the natural conditions surrounding the grave. The marked graves were detectable, providing a signal response that we could then use as a reference. This “field calibration” helps define the expected contrast and response from the GPR.

The GPR evaluation for unmarked graves was completed in a north/south orientation, which is perpendicular to the marked graves. Survey transects were spaced approximately two feet apart throughout the entire site (where access allowed). Small areas within the area and near the boundary of were inaccessible due to woody debris, stumps, living vegetation and fencing.
Figure 3 is a screenshot of the GPR data taken of the marked grave that was used as a representative signal. In this image, the hyperbolic shaped (sometimes referred to as “frowning”) lines represent the disturbed soil typical of old graves. After several passes over the marked grave, the size and the shape of the disturbances were corroborating evidence that this was a grave.

Figures 4 and 5 are screenshots of the GPR data taken in the field from located unmarked graves. Though not as “clean” and pronounced, the hyperbolic shaped lines had the size, shape, and signature of a ground disturbance typical of an older grave.

Figure 3: Ground penetrating radar data taken from the marked graves. This response signified that the graves were detectable and was used as a representative response to help locate unmarked graves.
Figure 4: Ground penetrating radar data. Hyperbolic shaped black and white lines within the pink area illustrate the anomalous areas interpreted and identified as unmarked graves.
Conclusions

- Reed Tech completed a detailed electromagnetic profile (EMP) and ground penetrating radar (GPR) evaluation of the entire cleared area including the cleared area outside of the fence.
- The EMP data responded well to the marked graves in the area, raising confidence that the unmarked graves in the surrounding area would also be detected using EMP.
- The GPR signal was useful in this area and aided in identifying and delineating several unmarked graves.
- A probe rod was used as corroborating evidence of the unmarked graves.
• Unmarked graves were indicated on-site with yellow paint and pink flags. Pictures of results can be found in Appendix 1.

Limitations
The detection of subsurface objects is dependent upon parameters that include size, physical composition, depth of burial, and soil conditions. The combination of these parameters may produce a response that is below the detection threshold for a given geophysical method. All the areas detected during the geophysical evaluation alone cannot determine the presence of graves. These potential unmarked graves are not confirmed until an invasive study is preformed to visually identify the graves. Finally, Reed Tech Utility and Geophysical Locating is not an archeological firm and the work completed on this project was strictly geophysical in nature.
Appendix 1: Pictures of results
11.0 Appendix D - Resumes
Kimberly Nagle

Project Manager/Principal Investigator

Ms. Nagle has 20 years of experience and is responsible for managing all aspects of the cultural resources department in Columbia, including financial and personnel management, marketing, preparing Memorandums of Agreement and data recovery plans, overseeing all aspects of field investigation and laboratory analysis, and ensuring that researching and reporting is to S&ME standards and is accomplished in a timely fashion. She has led numerous archaeological investigations serving a number of industrial, commercial, and residential developers, public utilities, and a variety of local, state, and federal agencies. She has managed projects on a variety of scales ranging from small single-property reconnaissance studies to multi-state pipeline corridors and large hydroelectric relicensing surveys. Ms. Nagle specializes in prehistoric archaeology, cultural resource management, GIS, and artifact curation, and possesses a variety of analytical skills including lithic and ceramic analysis, and human osteology.

Key Projects and Assignments

PIPELINE

T-072 Pipeline Project
Buncombe County, NC | June 2018-ongoing
Principal Investigator for the T-072 Pipeline Project. Conducted Phase I archaeological investigations along the pipeline corridor, lay down areas, and access roads. Consultation with three Tribal Historic Preservation Offices is being completed for the project and an ARPA permit was given to S&ME to excavate on National Park Service property, which the proposed alignment crossed. This work is ongoing.

South Conway Loop Pipeline Project
Horry County, SC | December 2018-ongoing
Principal Investigator for the project, conducted Phase I cultural resource investigations along the pipeline corridor, lay down areas, and access roads. An ARPA permit was given to S&ME to excavate on US Fish and Wildlife property, which the proposed alignment crossed. This work is ongoing.

DOT Projects and Assignments

NC 73 Roadway Improvements Project, NCDOT
Lincoln and Mecklenburg Counties, North Carolina | July-September 2019
Principal Investigator and project manager for archaeological survey and evaluation activities associated with four USACE permit areas, which comprise the project APE for the roadway improvements. Completed background research, intensive archaeological survey, and produced reporting for the project area.
U-3609A Roadway Improvements Project, NCDOT
Wayne County, North Carolina | June-August 2019
Principal Investigator and project manager for archaeological survey and evaluation activities associated with project APE of roughly 308 acres of roadway improvements. Completed background research, intensive archaeological survey, assessed project effects on two cemeteries and 12 archaeological sites, and produced reporting for the project area.

Rowell’s Marina LAP Project, FDOT
Monroe County, Florida | May 2019
Principal Investigator for the cultural resource survey associated with developing a trailhead/bike path, parking area, and single-story restroom in the Florida Keys. Completed background research, local historical society consultation, archaeological and architectural surveys, and associated reporting for the project area.

U-5857 Road Widening and U-5707 Road Extension Projects, NCDOT
Hoke County, North Carolina | April-June 2019
Principal Investigator and project manager for intensive archaeological survey and evaluation activities associated with road widening and roadway extension projects. Completed background research, intensive archaeological survey, assessed project effects on a family cemetery, and produced reporting for the two interrelated project areas.

Bridge Replacement Projects, Division 10, NCDOT
Anson, Cabarrus, Stanly, and Union Counties, North Carolina | March-April 2019
Principal Investigator and project manager for archaeological survey and evaluation activities associated with 10 bridge/pipe replacement project in Division 10. Completed background research, reconnaissance and intensive surveys, and associated reporting for the different project areas.

Other Linear Cultural Resource Projects

Winding Wood Reach
Dorchester County, South Carolina | February 2019-July 2019
Principal Investigator for a cultural resources survey for a proposed 7.75-mile water line expansion. One archaeological site and eight aboveground resources were recorded; 12 previously recorded aboveground resources were revisited during the survey. No additional cultural resource work was necessary for the project. This project was completed due to funding and construction of the project by the USACE.

Orangeburg Berkeley Reach
Berkeley and Orangeburg Counties, South Carolina | February 2019-ongoing
Principal Investigator for a cultural resources survey for a proposed 15-mile water line expansion. One archaeological site and 25 aboveground resources were recorded; five previously recorded aboveground resources were revisited during the survey. This project was completed due to funding and construction of the project by the USACE.
E. RESUMES OF KEY PERSONNEL PROPOSED FOR THIS CONTRACT

(Complete one Section E for each key person.)

<table>
<thead>
<tr>
<th>12. NAME</th>
<th>13. ROLE IN THIS CONTRACT</th>
<th>14. YEARS EXPERIENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heather Carpini, M.A.</td>
<td>Senior Architectural Historian/Historian</td>
<td>a. TOTAL 16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. WITH CURRENT FIRM 12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. FIRM NAME AND LOCATION (City and State)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S&ME, Inc. – Charleston, SC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. EDUCATION (DEGREE AND SPECIALIZATION)</th>
<th>17. CURRENT PROFESSIONAL REGISTRATION (STATE AND DISCIPLINE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA, Public History-Historic Preservation, USC, Columbia, 2005</td>
<td>N/A</td>
</tr>
<tr>
<td>BA, History, USC, Columbia, 2002</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18. OTHER PROFESSIONAL QUALIFICATIONS (Publications, Organizations, Training, Awards, etc.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Trust for Historic Preservation; National Council on Public History; American Association of State and Local History; Section 106 Essentials Training; Advanced Section 106 Training; Section 4f Training</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>19. RELEVANT PROJECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) TITLE AND LOCATION (County)</td>
</tr>
<tr>
<td>-------------------------------</td>
</tr>
<tr>
<td>Historic Building Inventory, TIP No. U-6009, Alamance County, NC</td>
</tr>
<tr>
<td>Principal Investigator for the Historic Building Inventory of proposed widening and construction of a center turn lane on US 70 (West Church Street), from Tarleton Avenue to Fifth Street in Burlington, Alamance County, North Carolina. The project was requested by North Carolina DOT. Project includes planning and executing the field survey and photography of approximately 100 structures that are greater than 50 years of age and the identification of three potential historic districts. The results of the project will be presented in PowerPoint presentation, which will evaluate the integrity of the structures and made recommendations for additional work based on National Register of Historic Places criteria. An associated summary table and Geographic Information System (GIS) data will also be completed and submitted as part of this project.</td>
</tr>
<tr>
<td>Historic Architectural Analysis, TIP No. W-52011, Beaufort County, NC</td>
</tr>
<tr>
<td>Principal Investigator for the historic and architectural analysis of four properties, in Beaufort County, North Carolina, identified as needing additional research. The project was completed for North Carolina DOT in anticipation of the construction of a roundabout at the intersection of US 264 and NC 32. Project included documentation of the structures and associated outbuildings, research on the history of the property, development of historic and architectural contexts, and evaluation of National Register of Historic Places eligibility; applicable state survey forms, digital photographs, and Geographic Information System (GIS) data were also completed and submitted as part of this project.</td>
</tr>
<tr>
<td>Historic Architectural Analysis, TIP No. U-5901, Rowan County, NC</td>
</tr>
<tr>
<td>Principal Investigator for the historic and architectural analysis of seven properties, in Rowan County, North Carolina, identified as needing additional research. The project was completed for North Carolina DOT in anticipation of the construction of Airport Parkway on a new location. Project included documentation of the structures and associated outbuildings, research on the history of the property, development of historic and architectural contexts, and evaluation of National Register of Historic Places eligibility; applicable state survey forms, digital photographs, and Geographic Information System (GIS) data were also completed and submitted as part of this project.</td>
</tr>
</tbody>
</table>